A Five-Tissue-Layer Human Body Communication Circuit Model Tunable to Individual Characteristics

Human body communication (HBC) has several advantages over traditional wireless communications due to the high conductivity of human body. An accurate body channel model plays a vital role in optimizing the performance and power of HBC transceivers. In this paper, we present a body channel model wit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 12; no. 2; pp. 303 - 312
Main Authors Mao, Jingna, Yang, Huazhong, Lian, Yong, Zhao, Bo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human body communication (HBC) has several advantages over traditional wireless communications due to the high conductivity of human body. An accurate body channel model plays a vital role in optimizing the performance and power of HBC transceivers. In this paper, we present a body channel model with three distinct features. First, it takes into account all five body tissue layers resulting better accuracy; second, it adapts to different individuals with the proposed layer thickness estimation technique; third, it counts in the variation of backward coupling capacitance versus different postures. These new features significantly improve the model accuracy. Measurement results show that the proposed model achieves a maximum error of 2.21% in path loss for different human subjects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1932-4545
1940-9990
1940-9990
DOI:10.1109/TBCAS.2018.2798410