Efficient silicon solar cells with dopant-free asymmetric heterocontacts
A salient characteristic of solar cells is their ability to subject photo-generated electrons and holes to pathways of asymmetrical conductivity—‘assisting’ them towards their respective contacts. All commercially available crystalline silicon (c-Si) solar cells achieve this by making use of doping...
Saved in:
Published in | Nature energy Vol. 1; no. 3; p. 15031 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.01.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A salient characteristic of solar cells is their ability to subject photo-generated electrons and holes to pathways of asymmetrical conductivity—‘assisting’ them towards their respective contacts. All commercially available crystalline silicon (c-Si) solar cells achieve this by making use of doping in either near-surface regions or overlying silicon-based films. Despite being commonplace, this approach is hindered by several optoelectronic losses and technological limitations specific to doped silicon. A progressive approach to circumvent these issues involves the replacement of doped-silicon contacts with alternative materials which can also form ‘carrier-selective’ interfaces on c-Si. Here we successfully develop and implement dopant-free electron and hole carrier-selective heterocontacts using alkali metal fluorides and metal oxides, respectively, in combination with passivating intrinsic amorphous silicon interlayers, resulting in power conversion efficiencies approaching 20%. Furthermore, the simplified architectures inherent to this approach allow cell fabrication in only seven low-temperature (≤200
∘
C), lithography-free steps. This is a marked improvement on conventional doped-silicon high-efficiency processes, and highlights potential improvements on both sides of the cost-to-performance ratio for c-Si photovoltaics.
The use of doped-silicon contacts in silicon solar cells adds cost and complexity to the fabrication process. These issues can now be circumvented by using dopant-free carrier-selective interfaces on silicon, realized by alkali metal fluorides and metal oxides. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2058-7546 2058-7546 |
DOI: | 10.1038/nenergy.2015.31 |