Automatically Design Convolutional Neural Networks by Optimization With Submodularity and Supermodularity

The architecture of convolutional neural networks (CNNs) is a key factor of influencing their performance. Although deep CNNs perform well in many difficult problems, how to intelligently design the architecture is still a challenging problem. Focusing on two practical architectural design problems:...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 9; pp. 3215 - 3229
Main Authors Hu, Wenzheng, Jin, Junqi, Liu, Tie-Yan, Zhang, Changshui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The architecture of convolutional neural networks (CNNs) is a key factor of influencing their performance. Although deep CNNs perform well in many difficult problems, how to intelligently design the architecture is still a challenging problem. Focusing on two practical architectural design problems: to maximize the accuracy with a given forward running time and to minimize the forward running time with a given accuracy requirement, we innovatively utilize prior knowledge to convert architecture optimization problems into submodular optimization problems. We propose efficient Greedy algorithms to solve them and give theoretical bounds of our algorithms. Specifically, we employ the techniques on some public data sets and compare our algorithms with some other hyperparameter optimization methods. Experiments show our algorithms' efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2939157