Distributed Arithmetic Coding for the Slepian-Wolf Problem

Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named ldquodistributed arithmetic coding,rdquo which extends arithmetic codes to the distributed case employing sequential decoding aided by the side informati...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 57; no. 6; pp. 2245 - 2257
Main Authors Grangetto, M., Magli, E., Olmo, G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Distributed source coding schemes are typically based on the use of channels codes as source codes. In this paper we propose a new paradigm, named ldquodistributed arithmetic coding,rdquo which extends arithmetic codes to the distributed case employing sequential decoding aided by the side information. In particular, we introduce a distributed binary arithmetic coder for the Slepian-Wolf coding problem, along with a joint decoder. The proposed scheme can be applied to two sources in both the asymmetric mode, wherein one source acts as side information, and the symmetric mode, wherein both sources are coded with ambiguity, at any combination of achievable rates. Distributed arithmetic coding provides several advantages over existing Slepian-Wolf coders, especially good performance at small block lengths, and the ability to incorporate arbitrary source models in the encoding process, e.g., context-based statistical models, in much the same way as a classical arithmetic coder. We have compared the performance of distributed arithmetic coding with turbo codes and low-density parity-check codes, and found that the proposed approach is very competitive.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2014280