Submodular Function Optimization for Motion Clustering and Image Segmentation

In this paper, we propose a framework of maximizing quadratic submodular energy with a knapsack constraint approximately, to solve certain computer vision problems. The proposed submodular maximization problem can be viewed as a generalization of the classic 0/1 knapsack problem. Importantly, maximi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 9; pp. 2637 - 2649
Main Authors Shen, Jianbing, Dong, Xingping, Peng, Jianteng, Jin, Xiaogang, Shao, Ling, Porikli, Fatih
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a framework of maximizing quadratic submodular energy with a knapsack constraint approximately, to solve certain computer vision problems. The proposed submodular maximization problem can be viewed as a generalization of the classic 0/1 knapsack problem. Importantly, maximization of our knapsack constrained submodular energy function can be solved via dynamic programing. We further introduce a range-reduction step prior to dynamic programing as a two-stage procedure for more efficient maximization. In order to demonstrate the effectiveness of the proposed energy function and its maximization algorithm, we apply it to two representative computer vision tasks: image segmentation and motion trajectory clustering. Experimental results of image segmentation demonstrate that our method outperforms the classic segmentation algorithms of graph cuts and random walks. Moreover, our framework achieves better performance than state-of-the-art methods on the motion trajectory clustering task.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2018.2885591