Composite Learning Enhanced Robot Impedance Control

The desired impedance dynamics can be achieved for a robot if and only if an impedance error converges to zero or a small neighborhood of zero. Although the convergence of impedance errors is important, it is seldom obtained in the existing impedance controllers due to robots modeling uncertainties...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 3; pp. 1052 - 1059
Main Authors Sun, Tairen, Peng, Liang, Cheng, Long, Hou, Zeng-Guang, Pan, Yongping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The desired impedance dynamics can be achieved for a robot if and only if an impedance error converges to zero or a small neighborhood of zero. Although the convergence of impedance errors is important, it is seldom obtained in the existing impedance controllers due to robots modeling uncertainties and external disturbances. This brief proposes two composite learning impedance controllers (CLICs) for robots with parameter uncertainties based on whether a factorization assumption is satisfied or not. In the proposed control designs, the convergence of impedance errors, reflected by the convergence of parameter estimation errors and some auxiliary errors, is achieved by using composite learning laws under a relaxed excitation condition. The theoretical results are proven based on the Lyapunov theory. The effectiveness and advantages of the proposed CLICs are validated by simulations on a parallel robot in three cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2912212