Observer-Based Decentralized Control for Non-Strict-Feedback Fractional-Order Nonlinear Large-Scale Systems With Unknown Dead Zones
This article addresses the output-feedback decentralized control issue for the fractional-order nonlinear large-scale nonstrict-feedback systems with states immeasurable and unknown dead zones. The unknown nonlinear functions are identified by neural networks (NNs), and immeasurable states are estim...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 10; pp. 7479 - 7490 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article addresses the output-feedback decentralized control issue for the fractional-order nonlinear large-scale nonstrict-feedback systems with states immeasurable and unknown dead zones. The unknown nonlinear functions are identified by neural networks (NNs), and immeasurable states are estimated by establishing an NNs' decentralized state observer. The algebraic loop issue is solved by using the property of NN basis functions and designing the fractional-order adaptation laws. In addition, the fractional-order dynamic surface control (FODSC) design technique is introduced in the adaptive backstepping control algorithm to avoid the issue of "explosion of complexity." Then, by treating the nonsymmetric dead zones as the time-varying uncertain systems, an adaptive NNs' output-feedback decentralized control scheme is developed via the fractional-order Lyapunov stability criterion. It is proven that the controlled fractional-order systems are stable, and the tracking and observer errors can converge to a small neighborhood of zero. Two simulation examples are given to confirm the validity of the put forward control scheme. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3143901 |