An RNN-Based Algorithm for Decentralized-Partial-Consensus Constrained Optimization

This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interco...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 1; pp. 534 - 542
Main Authors Xia, Zicong, Liu, Yang, Qiu, Jianlong, Ruan, Qihua, Cao, Jinde
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interconnected recurrent neural networks (RNNs) is derived to solve the optimization problem. In addition, based on nonsmooth analysis and Lyapunov theory, the convergence of continuous-time algorithm is further proved. Finally, several examples demonstrate the effectiveness of main results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3098668