An RNN-Based Algorithm for Decentralized-Partial-Consensus Constrained Optimization
This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interco...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 1; pp. 534 - 542 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interconnected recurrent neural networks (RNNs) is derived to solve the optimization problem. In addition, based on nonsmooth analysis and Lyapunov theory, the convergence of continuous-time algorithm is further proved. Finally, several examples demonstrate the effectiveness of main results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3098668 |