Adaptive Asymptotic Neural Network Control of Nonlinear Systems With Unknown Actuator Quantization

In this paper, we propose an adaptive neural-network-based asymptotic control algorithm for a class of nonlinear systems subject to unknown actuator quantization. To this end, we exploit the sector property of the quantization nonlinearity and transform actuator quantization control problem into ana...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 12; pp. 6303 - 6312
Main Authors Xie, Kan, Chen, Ci, Lewis, Frank L., Xie, Shengli
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2018.2828315

Cover

More Information
Summary:In this paper, we propose an adaptive neural-network-based asymptotic control algorithm for a class of nonlinear systems subject to unknown actuator quantization. To this end, we exploit the sector property of the quantization nonlinearity and transform actuator quantization control problem into analyzing its upper bounds, which are then handled by a dynamic loop gain function-based approach. In our adaptive control scheme, there is only one parameter required to be estimated online for updating weights of neural networks. Within the framework of Lyapunov theory, it is shown that the proposed algorithm ensures that all the signals in the closed-loop system are ultimately bounded. Moreover, an asymptotic tracking error is obtained by means of introducing Barbalat's lemma to the proposed adaptive law.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2018.2828315