Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility
All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scr...
Saved in:
Published in | Journal of power sources Vol. 367; pp. 34 - 41 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm−2 at 20 mV·s−1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm−3 and an energy density of 5.3 × 10−5 Wh·cm−3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm−2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.
•The laser-scribed GO layers possess three-dimensionally porous structure.•As-prepared MSC has high areal specific capacitance and good cycling stability.•Washing and bending have minimal degradation in MSC's electrochemical performance.•Cross-linking reaction can improve the wash fastness of all solid-sate MSCs. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2017.09.047 |