Purification and some properties of UDP-xylosyltransferase of rat ear cartilage

UDP-xylosyltransferase (UDP-D-xylose:proteoglycan core protein beta-D-xylosyltransferase EC 2.4.2.26) initiates the formation of chondroitin sulfate in the course of proteoglycan biosynthesis. The enzyme catalyzes the transfer of D-xylose from UDP-D-xylose to specific serine residues in the core pro...

Full description

Saved in:
Bibliographic Details
Published inGlycobiology (Oxford) Vol. 10; no. 8; pp. 803 - 807
Main Authors Pfeil, U, Wenzel, K W
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.08.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:UDP-xylosyltransferase (UDP-D-xylose:proteoglycan core protein beta-D-xylosyltransferase EC 2.4.2.26) initiates the formation of chondroitin sulfate in the course of proteoglycan biosynthesis. The enzyme catalyzes the transfer of D-xylose from UDP-D-xylose to specific serine residues in the core protein. A procedure for purification of xylosyltransferase from rat ear cartilage was developed which includes ammonium sulfate fractionation, chromatography on heparin-agarose, on Sephacryl S300 and finally a substrate affinity chromatography applying the dodeca peptide Q-E-E-E-G-S-G-G-G-Q-G-G. The specific activity of the purified enzyme was about 420 mU per mg protein. The purification factor was about 26.000 with 27% yield. In SDS-polyacrylamide gel electrophoresis, the highly purified enzyme is homogeneous and yields only a single distinct band of 78 kDa. An apparent molecular mass of 71 kDa was determined for the native enzyme. These data suggest a monomeric structure for the enzyme. Xylosyltransferase activity was found to depend essentially on the presence of divalent metal ions. The K(m) value for UDP-D-xylose was determined to 6.5 micromol/l and for the dodeca peptide Q-E-E-E-G-S-G-G-G-Q-G-G as xylose acceptor to 8 micromol/l.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/10.8.803