Efficient Epileptic Seizure Prediction Based on Deep Learning

Epilepsy is one of the world's most common neurological diseases. Early prediction of the incoming seizures has a great influence on epileptic patients' life. In this paper, a novel patient-specific seizure prediction technique based on deep learning and applied to long-term scalp electroe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 13; no. 5; pp. 804 - 813
Main Authors Daoud, Hisham, Bayoumi, Magdy A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epilepsy is one of the world's most common neurological diseases. Early prediction of the incoming seizures has a great influence on epileptic patients' life. In this paper, a novel patient-specific seizure prediction technique based on deep learning and applied to long-term scalp electroencephalogram (EEG) recordings is proposed. The goal is to accurately detect the preictal brain state and differentiate it from the prevailing interictal state as early as possible and make it suitable for real time. The features extraction and classification processes are combined into a single automated system. Raw EEG signal without any preprocessing is considered as the input to the system which further reduces the computations. Four deep learning models are proposed to extract the most discriminative features which enhance the classification accuracy and prediction time. The proposed approach takes advantage of the convolutional neural network in extracting the significant spatial features from different scalp positions and the recurrent neural network in expecting the incidence of seizures earlier than the current methods. A semi-supervised approach based on transfer learning technique is introduced to improve the optimization problem. A channel selection algorithm is proposed to select the most relevant EEG channels which makes the proposed system good candidate for real-time usage. An effective test method is utilized to ensure robustness. The achieved highest accuracy of 99.6% and lowest false alarm rate of 0.004 h - 1 along with very early seizure prediction time of 1 h make the proposed method the most efficient among the state of the art.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1932-4545
1940-9990
1940-9990
DOI:10.1109/TBCAS.2019.2929053