Direct sequencing of total Saccharomyces cerevisiae tRNAs by LC–MS/MS

Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant posttranscriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuri...

Full description

Saved in:
Bibliographic Details
Published inRNA (Cambridge) Vol. 29; no. 8; pp. 1201 - 1214
Main Authors Jones, Joshua D., Simcox, Kaley M., Kennedy, Robert T., Koutmou, Kristin S.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant posttranscriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases, and the resulting single-stranded RNA products are subject to LC–MS/MS analysis. The application of LC–MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time, because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA-specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence Saccharomyces cerevisiae tRNAs with up to 97% sequence coverage for individual tRNA species by LC–MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1355-8382
1469-9001
1469-9001
DOI:10.1261/rna.079656.123