Event-Triggered Adaptive Neural Network Tracking Control for Uncertain Systems With Unknown Input Saturation Based on Command Filters

This brief presents a modified event-triggered command filter backstepping tracking control scheme for a class of uncertain nonlinear systems with unknown input saturation based on the adaptive neural network (NN) technique. First, the virtual control functions are reconstructed to address the uncer...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 6; pp. 8702 - 8707
Main Authors Liu, Jiapeng, Wang, Qing-Guo, Yu, Jinpeng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This brief presents a modified event-triggered command filter backstepping tracking control scheme for a class of uncertain nonlinear systems with unknown input saturation based on the adaptive neural network (NN) technique. First, the virtual control functions are reconstructed to address the uncertainties in subsystems by using command filters. A piecewise continuous function is employed to deal with the unknown input saturation problem. Next, an event-triggered tracking controller is developed by utilizing the adaptive NN technique. Compared with standard NN control schemes based on multiple-function-approximators, our controller only requires a single NN. The closed-loop system stability is analyzed based on the Lyapunov stability theorem, and it is shown that the Zeno behavior is also avoided under the designed event-triggering mechanism. Simulation studies are performed to validate the effectiveness of our controller.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3224065