BLASTP-ACC: Parallel Architecture and Hardware Accelerator Design for BLAST-Based Protein Sequence Alignment

In this study, we design a hardware accelerator for a widely used sequence alignment algorithm, the basic local alignment search tool for proteins (BLASTP). The architecture of the proposed accelerator consists of five stages: a new systolic-array-based one-hit finding stage, a novel RAM-REG-based t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 13; no. 6; pp. 1771 - 1782
Main Authors Li, Yu-Cheng, Lu, Yi-Chang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we design a hardware accelerator for a widely used sequence alignment algorithm, the basic local alignment search tool for proteins (BLASTP). The architecture of the proposed accelerator consists of five stages: a new systolic-array-based one-hit finding stage, a novel RAM-REG-based two-hit finding stage, a refined ungapped extension stage, a faster gapped extension stage, and a highly efficient parallel sorter. The system is implemented on an Altera Stratix V FPGA with a processing speed of more than 500 giga cell updates per second (GCUPS). It can receive a query sequence, compare it with the sequences in the database, and generate a list sorted in descending order of the similarity scores between the query sequence and the subject sequences. Moreover, it is capable of processing both query and subject protein sequences comprising as many as 8192 amino acid residues in a single pass. Using data from the National Center for Biotechnology Information (NCBI) database, we show that a speed-up of more than 3× can be achieved with our hardware compared to the runtime required by BLASTP software on an 8-thread Intel Xeon CPU with 144 GB DRAM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1932-4545
1940-9990
1940-9990
DOI:10.1109/TBCAS.2019.2943539