Harmony search algorithm with differential evolution based control parameter co-evolution and its application in chemical process dynamic optimization

A modified harmony search algorithm with co-evolutional control parameters (DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original i...

Full description

Saved in:
Bibliographic Details
Published inJournal of Central South University Vol. 22; no. 6; pp. 2227 - 2237
Main Authors Fan, Qin-qin, Wang, Xun-hua, Yan, Xue-feng
Format Journal Article
LanguageEnglish
Published Changsha Central South University 01.06.2015
Subjects
Online AccessGet full text
ISSN2095-2899
2227-5223
DOI10.1007/s11771-015-2747-8

Cover

More Information
Summary:A modified harmony search algorithm with co-evolutional control parameters (DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual (i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-015-2747-8