Simultaneous Discrimination of Cereulide-Producing Bacillus cereus and Psychrotolerant B. cereus Group by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry

Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to dis...

Full description

Saved in:
Bibliographic Details
Published inJournal of food protection Vol. 85; no. 8; pp. 1192 - 1202
Main Authors Takahashi, Naomi, Nagai, Satomi, Tomimatsu, Yumiko, Saito, Ayumi, Kaneta, Naoko, Tsujimoto, Yoshinori, Tamura, Hiroto
Format Journal Article
LanguageEnglish
Published United States Elsevier Limited 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to discriminate the cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains are needed. We developed a novel, rapid, and simple method with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis for simultaneous discrimination of these two groups from other B. cereus group strains. A potassium adduct of cereulide was used to detect cereulide-producing B. cereus, and three ribosomal subunit proteins (L30, S16, and S20) were used to detect psychrotolerant B. cereus group. A total of 51 B. cereus group strains were analyzed by MALDI-TOF MS. The biomarkers allowed successful discrimination of 16 cereulide-producing B. cereus and 15 psychrotolerant B. cereus group strains from other B. cereus group strains. The results showed that this MALDI-TOF MS analysis allows simultaneous discrimination of cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains. This efficient method has the potential to be a valuable tool for ensuring food safety.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0362-028X
1944-9097
DOI:10.4315/JFP-21-450