Pinning Impulsive Synchronization of Reaction-Diffusion Neural Networks With Time-Varying Delays
This paper investigates the exponential synchronization of reaction-diffusion neural networks with time-varying delays subject to Dirichlet boundary conditions. A novel type of pinning impulsive controllers is proposed to synchronize the reaction-diffusion neural networks with time-varying delays. B...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 28; no. 5; pp. 1055 - 1067 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates the exponential synchronization of reaction-diffusion neural networks with time-varying delays subject to Dirichlet boundary conditions. A novel type of pinning impulsive controllers is proposed to synchronize the reaction-diffusion neural networks with time-varying delays. By applying the Lyapunov functional method, sufficient verifiable conditions are constructed for the exponential synchronization of delayed reaction-diffusion neural networks with large and small delay sizes. It is shown that synchronization can be realized by pinning impulsive control of a small portion of neurons of the network; the technique used in this paper is also applicable to reaction-diffusion networks with Neumann boundary conditions. Numerical examples are presented to demonstrate the effectiveness of the theoretical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2016.2518479 |