Pinning Impulsive Synchronization of Reaction-Diffusion Neural Networks With Time-Varying Delays

This paper investigates the exponential synchronization of reaction-diffusion neural networks with time-varying delays subject to Dirichlet boundary conditions. A novel type of pinning impulsive controllers is proposed to synchronize the reaction-diffusion neural networks with time-varying delays. B...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 5; pp. 1055 - 1067
Main Authors Liu, Xinzhi, Zhang, Kexue, Xie, Wei-Chau
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates the exponential synchronization of reaction-diffusion neural networks with time-varying delays subject to Dirichlet boundary conditions. A novel type of pinning impulsive controllers is proposed to synchronize the reaction-diffusion neural networks with time-varying delays. By applying the Lyapunov functional method, sufficient verifiable conditions are constructed for the exponential synchronization of delayed reaction-diffusion neural networks with large and small delay sizes. It is shown that synchronization can be realized by pinning impulsive control of a small portion of neurons of the network; the technique used in this paper is also applicable to reaction-diffusion networks with Neumann boundary conditions. Numerical examples are presented to demonstrate the effectiveness of the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2016.2518479