Compound heterozygosity for two novel mutations of the SEC23B gene in congenital dyserythropoietic anemia type II

Congenital dyserythropoietic anemia type II (CDA II), a rare genetic disorder, results from SEC23B gene mutations according to previous studies. Here, we present a case of CDA II involving two novel pathogenic mutations of SEC23B that have not previously been reported. The patient suffered from jaun...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hematology Vol. 114; no. 3; pp. 390 - 394
Main Authors Chen, Shanshan, Guo, Ziwen, Ye, Yongbin, Yang, Shanhong, Huang, Guinian
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Congenital dyserythropoietic anemia type II (CDA II), a rare genetic disorder, results from SEC23B gene mutations according to previous studies. Here, we present a case of CDA II involving two novel pathogenic mutations of SEC23B that have not previously been reported. The patient suffered from jaundice, tea-colored urine, and weakness. Laboratory data indicated moderately decreased hemoglobin, iron overload, and abnormal erythroblast morphology. Therefore, a diagnosis of CDA II was considered. Peripheral blood samples were used to perform whole exome sequencing, and the results showed compound heterozygosity of the SEC23B gene with the following mutations: c.1162T>A (p.F388I) and c.1603delC (p.R535del). The mutant proteins were predicted to be deleterious and resulted in decreased structural stability. PyMOL software was used to analyze the structural change caused by the p.F388I missense mutation, and the results indicated a deficiency in π – π interactions. In conclusion, our report extends the mutation spectrum of SEC23B in the diagnosis of CDA II.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
ISSN:0925-5710
1865-3774
DOI:10.1007/s12185-021-03155-1