Direct gap photoluminescence of n -type tensile-strained Ge-on-Si

Room temperature direct gap photoluminescence (PL) was observed from n -type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n -type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases wit...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 95; no. 1; pp. 011911 - 011911-3
Main Authors Sun, Xiaochen, Liu, Jifeng, Kimerling, Lionel C., Michel, Jurgen
Format Journal Article
LanguageEnglish
Published American Institute of Physics 06.07.2009
Online AccessGet full text

Cover

Loading…
Abstract Room temperature direct gap photoluminescence (PL) was observed from n -type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n -type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases with temperature due to thermal excitation of electrons into the direct Γ valley, exhibiting robustness to heating effects. These unique properties of direct gap emission in an indirect gap material agree with our theoretical model and make Ge a promising light emitting material in 1550 nm communication band.
AbstractList Room temperature direct gap photoluminescence (PL) was observed from n-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n-type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases with temperature due to thermal excitation of electrons into the direct Γ valley, exhibiting robustness to heating effects. These unique properties of direct gap emission in an indirect gap material agree with our theoretical model and make Ge a promising light emitting material in 1550 nm communication band.
Room temperature direct gap photoluminescence (PL) was observed from n -type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n -type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases with temperature due to thermal excitation of electrons into the direct Γ valley, exhibiting robustness to heating effects. These unique properties of direct gap emission in an indirect gap material agree with our theoretical model and make Ge a promising light emitting material in 1550 nm communication band.
Author Sun, Xiaochen
Michel, Jurgen
Kimerling, Lionel C.
Liu, Jifeng
Author_xml – sequence: 1
  givenname: Xiaochen
  surname: Sun
  fullname: Sun, Xiaochen
  email: sunxc@mit.edu.
  organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
– sequence: 2
  givenname: Jifeng
  surname: Liu
  fullname: Liu, Jifeng
  organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
– sequence: 3
  givenname: Lionel
  surname: Kimerling
  middlename: C.
  fullname: Kimerling, Lionel C.
  organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
– sequence: 4
  givenname: Jurgen
  surname: Michel
  fullname: Michel, Jurgen
  organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
BookMark eNp1kEFLwzAYhoNMcE4P_oNcPWTL17RJehHG1CkMPKjnkKZfNdKlpYmH_Xs7Nj2Inj5eeN6Xj-ecTEIXkJAr4HPgUixgLkBxrfgJmQJXigkAPSFTzrlgsizgjJzH-DHGIhNiSpa3fkCX6Jvtaf_epa793PqA0WFwSLuGBsrSrkeaMETfIotpsCNQ0zWyLrBnf0FOG9tGvDzeGXm9v3tZPbDN0_pxtdwwJwqeGGIGulJNJjVWpa5B5irPXVVb3Yi8KbiEGl0NripVXfAsQwmqkKClyEqrpJiRxWHXDV2MAzbG-WST78L-o9YAN3sDBszRwNi4_tXoB7-1w-5P9ubAxu_V_-GDMjMqMz_KxBdgAnFX
CODEN APPLAB
CitedBy_id crossref_primary_10_7567_APEX_8_092101
crossref_primary_10_1016_j_tsf_2009_10_062
crossref_primary_10_1063_1_3352048
crossref_primary_10_4236_opj_2018_82002
crossref_primary_10_7567_JJAP_50_04DP08
crossref_primary_10_1021_acsaelm_1c00373
crossref_primary_10_1109_JPHOT_2012_2224101
crossref_primary_10_1155_2012_768605
crossref_primary_10_6111_JKCGCT_2011_21_4_153
crossref_primary_10_3938_jkps_64_1430
crossref_primary_10_1063_1_4802199
crossref_primary_10_1063_1_4874800
crossref_primary_10_1007_s13391_013_3207_y
crossref_primary_10_1016_j_jcrysgro_2022_126766
crossref_primary_10_7498_aps_67_20172680
crossref_primary_10_1186_s11671_016_1682_4
crossref_primary_10_1364_OL_35_000679
crossref_primary_10_1016_j_mssp_2014_01_038
crossref_primary_10_1149_2_0091701jss
crossref_primary_10_1063_1_4959147
crossref_primary_10_1063_1_4804266
crossref_primary_10_1016_j_tsf_2013_11_027
crossref_primary_10_1088_1361_6463_ab5dcd
crossref_primary_10_1016_j_jlumin_2020_117539
crossref_primary_10_3938_jkps_64_98
crossref_primary_10_1149_2_0351609jss
crossref_primary_10_1088_1361_6641_aae62e
crossref_primary_10_3938_jkps_63_1034
crossref_primary_10_1063_1_5130567
crossref_primary_10_1088_1674_4926_39_6_061001
crossref_primary_10_1088_1674_4926_39_6_061004
crossref_primary_10_1088_1674_4926_39_6_061006
crossref_primary_10_1088_1361_6528_aa5b3d
crossref_primary_10_1016_j_tsf_2013_10_136
crossref_primary_10_1039_c3nr34258a
crossref_primary_10_1063_5_0019959
crossref_primary_10_1063_1_3559231
crossref_primary_10_1080_00387010_2019_1660683
crossref_primary_10_1109_TED_2019_2961738
crossref_primary_10_1002_aelm_202300288
crossref_primary_10_1364_PRJ_1_000102
crossref_primary_10_1016_j_sse_2019_02_007
crossref_primary_10_1016_j_optmat_2022_112633
crossref_primary_10_1063_1_3429085
crossref_primary_10_1088_2043_6262_6_1_015013
crossref_primary_10_1364_PRJ_5_000239
crossref_primary_10_1016_j_mssp_2023_107433
crossref_primary_10_1080_09500340_2020_1811412
crossref_primary_10_3938_jkps_64_443
crossref_primary_10_1038_srep26607
crossref_primary_10_1063_1_5088012
crossref_primary_10_7567_JJAP_57_021303
crossref_primary_10_1021_acsanm_0c03373
crossref_primary_10_1088_1361_6463_aa8ed5
crossref_primary_10_3389_fnins_2021_732368
crossref_primary_10_7567_JJAP_56_01AB05
crossref_primary_10_1063_5_0020489
crossref_primary_10_7498_aps_61_036202
crossref_primary_10_1587_elex_11_20142008
crossref_primary_10_1063_1_3592837
crossref_primary_10_1103_PhysRevB_87_195420
crossref_primary_10_1016_j_jcrysgro_2012_12_014
crossref_primary_10_1016_j_tsf_2018_07_028
crossref_primary_10_1109_LED_2019_2910047
crossref_primary_10_1063_1_3580605
crossref_primary_10_1364_PRJ_491763
crossref_primary_10_1063_1_4803927
crossref_primary_10_1364_OME_2_001462
crossref_primary_10_1007_s11664_019_07254_y
crossref_primary_10_1364_OL_476517
crossref_primary_10_1088_1361_6463_aa8bcf
crossref_primary_10_1063_1_4931707
crossref_primary_10_1063_1_3327435
crossref_primary_10_3938_jkps_67_1646
crossref_primary_10_1364_OME_7_000800
crossref_primary_10_1088_1674_1056_26_12_127402
crossref_primary_10_1007_s10946_020_09853_1
crossref_primary_10_1063_1_4829621
crossref_primary_10_1088_1402_4896_ab182b
crossref_primary_10_1063_1_4891755
crossref_primary_10_1142_S021798491850224X
crossref_primary_10_1021_acs_nanolett_0c00421
crossref_primary_10_1143_APEX_5_015701
crossref_primary_10_1063_5_0044901
crossref_primary_10_5402_2012_428690
crossref_primary_10_1063_1_3275863
crossref_primary_10_1063_1_3647572
crossref_primary_10_1038_s41598_019_48032_4
crossref_primary_10_3390_nano10051006
crossref_primary_10_1021_cm201648x
crossref_primary_10_1063_1_3462400
crossref_primary_10_1016_j_mssp_2023_107516
crossref_primary_10_35848_1347_4065_ab867d
crossref_primary_10_1016_j_jcrysgro_2012_11_002
crossref_primary_10_1016_j_tsf_2011_10_121
crossref_primary_10_1021_nn103149c
crossref_primary_10_1016_j_optcom_2016_08_066
crossref_primary_10_1039_D2TC02862J
crossref_primary_10_1063_1_3700804
crossref_primary_10_1364_OE_432324
crossref_primary_10_7498_aps_64_206102
crossref_primary_10_1007_s12200_012_0200_2
crossref_primary_10_1063_1_3297883
crossref_primary_10_1063_1_4948240
crossref_primary_10_3938_jkps_64_715
crossref_primary_10_1021_cm403801b
crossref_primary_10_1016_j_apsusc_2016_09_019
crossref_primary_10_1063_1_3691790
crossref_primary_10_1063_1_4754625
crossref_primary_10_1063_1_3521391
crossref_primary_10_1063_1_4862890
crossref_primary_10_1134_S1063784215030214
crossref_primary_10_1088_1674_1056_25_12_126104
crossref_primary_10_1016_j_tsf_2013_10_082
crossref_primary_10_1364_OE_22_003902
crossref_primary_10_1063_1_4818945
crossref_primary_10_1016_j_proeng_2017_11_153
crossref_primary_10_1088_0268_1242_29_11_115028
crossref_primary_10_1038_srep24802
crossref_primary_10_1063_1_4883466
crossref_primary_10_3390_photonics1030162
crossref_primary_10_1038_lsa_2015_131
crossref_primary_10_1038_s41598_018_35224_7
crossref_primary_10_3390_electronics6010019
crossref_primary_10_1364_OE_25_021286
crossref_primary_10_1063_1_3655679
crossref_primary_10_1016_j_tsf_2015_08_044
crossref_primary_10_1016_j_pcrysgrow_2015_11_001
crossref_primary_10_1063_1_3651196
crossref_primary_10_1063_1_3494594
crossref_primary_10_1002_adom_202301028
crossref_primary_10_1016_j_tsf_2013_04_020
crossref_primary_10_1016_j_vacuum_2022_111269
crossref_primary_10_1038_nphoton_2014_321
crossref_primary_10_1088_0022_3727_48_21_215103
crossref_primary_10_1364_OE_415230
crossref_primary_10_1103_PhysRevB_88_045204
crossref_primary_10_1063_5_0203305
crossref_primary_10_1016_j_cap_2013_11_009
crossref_primary_10_35848_1347_4065_ad2137
crossref_primary_10_1088_1361_6528_aa565c
crossref_primary_10_1016_j_tsf_2013_08_117
crossref_primary_10_1002_pssr_200903294
crossref_primary_10_1088_0953_8984_24_19_195802
crossref_primary_10_1103_PhysRevB_84_205307
crossref_primary_10_7567_APEX_9_052101
crossref_primary_10_1063_1_4874615
crossref_primary_10_1515_nanoph_2021_0122
crossref_primary_10_1063_1_4745020
crossref_primary_10_1134_S1063782615060160
crossref_primary_10_1016_j_mssp_2015_04_024
crossref_primary_10_1063_1_4892302
crossref_primary_10_1364_OE_20_008228
crossref_primary_10_1016_j_tsf_2015_09_075
crossref_primary_10_1142_S0217979224501716
crossref_primary_10_1088_0268_1242_30_4_045007
crossref_primary_10_1103_PhysRevLett_110_177404
crossref_primary_10_1364_OE_413503
crossref_primary_10_1063_1_3562589
crossref_primary_10_7567_APEX_11_011304
crossref_primary_10_1016_j_mssp_2019_05_005
crossref_primary_10_1007_s12200_012_0193_x
crossref_primary_10_1063_1_4831798
crossref_primary_10_1063_1_4800015
crossref_primary_10_1016_j_spmi_2017_06_020
crossref_primary_10_1149_2_0151503jss
crossref_primary_10_7567_JJAP_54_052101
crossref_primary_10_1016_j_tsf_2015_04_040
crossref_primary_10_1016_j_pcrysgrow_2017_04_004
crossref_primary_10_1016_j_mssp_2016_09_008
crossref_primary_10_1088_0268_1242_31_4_043002
crossref_primary_10_1364_OE_24_009132
crossref_primary_10_1063_1_5012512
crossref_primary_10_1109_JSTQE_2009_2027445
crossref_primary_10_1364_OE_21_028219
crossref_primary_10_7567_JJAP_56_032102
crossref_primary_10_1016_j_sse_2015_01_008
crossref_primary_10_1016_j_joule_2021_07_011
crossref_primary_10_1109_JQE_2019_2956347
crossref_primary_10_1109_JSTQE_2012_2206802
crossref_primary_10_1016_j_mssp_2024_108299
crossref_primary_10_1021_nl303694c
crossref_primary_10_1088_1674_1056_25_5_057804
crossref_primary_10_1063_1_3673538
crossref_primary_10_1063_1_4801805
crossref_primary_10_1088_1361_6641_aa8499
crossref_primary_10_1063_1_4894870
crossref_primary_10_1016_j_jcrysgro_2012_03_023
crossref_primary_10_1021_nl401860f
crossref_primary_10_1063_1_5009327
crossref_primary_10_1103_PhysRevB_93_125206
crossref_primary_10_15625_0868_3166_23_4_3207
crossref_primary_10_1088_1674_1056_23_9_096103
crossref_primary_10_1143_JJAP_50_04DP08
crossref_primary_10_3390_cryst11080905
crossref_primary_10_1021_acs_cgd_0c00125
crossref_primary_10_1103_PhysRevB_86_035306
crossref_primary_10_1109_JPHOT_2010_2046026
crossref_primary_10_7498_aps_64_204208
crossref_primary_10_1063_1_4878619
crossref_primary_10_1103_PhysRevMaterials_3_034602
crossref_primary_10_3390_ma9100803
crossref_primary_10_1016_j_vacuum_2019_109047
crossref_primary_10_1016_j_mssp_2013_04_022
crossref_primary_10_1016_j_tsf_2011_10_090
Cites_doi 10.1063/1.1525865
10.1364/OE.15.011272
10.1016/0038-1101(78)90210-1
10.1088/0022-3719/12/13/004
10.1103/PhysRevB.39.1871
10.1063/1.125187
10.1103/PhysRevLett.57.1777
10.1063/1.1943507
10.1103/PhysRevB.70.155309
10.1016/0038-1098(76)91286-2
10.1364/OE.14.009203
10.1063/1.1564868
ContentType Journal Article
Copyright 2009 American Institute of Physics
Copyright_xml – notice: 2009 American Institute of Physics
DBID AAYXX
CITATION
DOI 10.1063/1.3170870
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
EndPage 011911-3
ExternalDocumentID 10_1063_1_3170870
apl
GrantInformation_xml – fundername: UNSPECIFIED
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
6TJ
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
AAYJJ
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P2P
RIP
RNS
ROL
RQS
SJN
TAE
TN5
UCJ
UPT
UQL
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
ID FETCH-LOGICAL-c350t-ee218b7f268eb98d164744cbda8f34f5061decd1cb97d5022e61756186329a763
ISSN 0003-6951
IngestDate Tue Jul 01 03:04:28 EDT 2025
Thu Apr 24 23:12:53 EDT 2025
Fri Jun 21 00:18:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-ee218b7f268eb98d164744cbda8f34f5061decd1cb97d5022e61756186329a763
ParticipantIDs crossref_citationtrail_10_1063_1_3170870
crossref_primary_10_1063_1_3170870
scitation_primary_10_1063_1_3170870Direct_gap_photolumi
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-06
PublicationDateYYYYMMDD 2009-07-06
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-06
  day: 06
PublicationDecade 2000
PublicationTitle Applied physics letters
PublicationYear 2009
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Luan, H.; Lim, D.; Lee, K.; Chen, K.; Sandland, J.; Wada, K.; Kimerling, L. 1999; 75
Liu, J.; Sun, X.; Pan, D.; Wang, X.; Kimerling, L.; Koch, T.; Michel, J. 2007; 15
Ishikawa, Y.; Ishikawa, Y.; Wada, K.; Liu, J.; Cannon, D.; Luan, H.; Michel, J.; Kimerling, L. 2005; 98
Mayer, A.; Lightowlers, E. 1979; 12
Ishikawa, Y.; Wada, K.; Cannon, D.; Liu, J.; Luan, H.; Kimerling, L. 2003; 82
Liu, J.; Cannon, D.; Ishikawa, Y.; Wada, K.; Danielson, D.; Jongthammanurak, S.; Michel, J.; Kimerling, L. 2004; 70
Zhdanova, V.; Kontorova, T. 1966; 7
Klingenstein, W.; Schweizer, H. 1978; 21
Van de Walle, C. 1989; 39
John, S.; Soukoulis, C.; Cohen, M.; Economou, E. 1986; 57
Fang, A.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.; Bowers, J. 2006; 14
van Driel, H.; Elci, A.; Bessey, J.; Scully, M. 1976; 20
Groenert, M.; Leitz, C.; Pitera, A.; Yang, V.; Lee, H.; Ram, R.; Fitzerald, E. 2003; 93
(2023070222434824100_c15) 1996
(2023070222434824100_c9) 2004; 70
(2023070222434824100_c14) 1986; 57
(2023070222434824100_c12) 1966; 7
(2023070222434824100_c7) 1976; 20
(2023070222434824100_c13) 1989; 39
(2023070222434824100_c8) 2003; 82
(2023070222434824100_c2) 2003; 93
(2023070222434824100_c11) 1999; 75
(2023070222434824100_c5) 1964
(2023070222434824100_c6) 1978; 21
(2023070222434824100_c4) 1979; 12
(2023070222434824100_c1) 2006; 14
(2023070222434824100_c3) 2007; 15
(2023070222434824100_c10) 2005; 98
References_xml – volume: 93
  start-page: 362
  year: 2003
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1525865
– volume: 15
  start-page: 11272
  year: 2007
  publication-title: Opt. Express
  doi: 10.1364/OE.15.011272
– volume: 21
  start-page: 1371
  year: 1978
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(78)90210-1
– volume: 12
  start-page: L507
  year: 1979
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/12/13/004
– volume: 39
  start-page: 1871
  year: 1989
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1871
– volume: 75
  start-page: 2909
  year: 1999
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125187
– volume: 57
  start-page: 1777
  year: 1986
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.1777
– volume: 98
  start-page: 013501
  year: 2005
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1943507
– volume: 70
  start-page: 155309
  year: 2004
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.155309
– volume: 7
  start-page: 2685
  year: 1966
  publication-title: Sov. Phys. Solid State
– volume: 20
  start-page: 837
  year: 1976
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(76)91286-2
– volume: 14
  start-page: 9203
  year: 2006
  publication-title: Opt. Express
  doi: 10.1364/OE.14.009203
– volume: 82
  start-page: 2044
  year: 2003
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1564868
– volume: 75
  start-page: 2909
  year: 1999
  ident: 2023070222434824100_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125187
– volume: 7
  start-page: 2685
  year: 1966
  ident: 2023070222434824100_c12
  publication-title: Sov. Phys. Solid State
– volume: 20
  start-page: 837
  year: 1976
  ident: 2023070222434824100_c7
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(76)91286-2
– volume: 12
  start-page: L507
  year: 1979
  ident: 2023070222434824100_c4
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/12/13/004
– volume: 21
  start-page: 1371
  year: 1978
  ident: 2023070222434824100_c6
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(78)90210-1
– volume: 70
  start-page: 155309
  year: 2004
  ident: 2023070222434824100_c9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.155309
– volume: 39
  start-page: 1871
  year: 1989
  ident: 2023070222434824100_c13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1871
– volume: 57
  start-page: 1777
  year: 1986
  ident: 2023070222434824100_c14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.1777
– volume: 82
  start-page: 2044
  year: 2003
  ident: 2023070222434824100_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1564868
– start-page: 21
  year: 1964
  ident: 2023070222434824100_c5
– volume: 15
  start-page: 11272
  year: 2007
  ident: 2023070222434824100_c3
  publication-title: Opt. Express
  doi: 10.1364/OE.15.011272
– volume: 98
  start-page: 013501
  year: 2005
  ident: 2023070222434824100_c10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1943507
– volume: 93
  start-page: 362
  year: 2003
  ident: 2023070222434824100_c2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1525865
– volume: 14
  start-page: 9203
  year: 2006
  ident: 2023070222434824100_c1
  publication-title: Opt. Express
  doi: 10.1364/OE.14.009203
– start-page: 33
  volume-title: Handbook Series on Semiconductor Parameters
  year: 1996
  ident: 2023070222434824100_c15
SSID ssj0005233
Score 2.4360409
Snippet Room temperature direct gap photoluminescence (PL) was observed from n -type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n -type...
Room temperature direct gap photoluminescence (PL) was observed from n-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n-type doping...
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
StartPage 011911
Title Direct gap photoluminescence of n -type tensile-strained Ge-on-Si
URI http://dx.doi.org/10.1063/1.3170870
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IupBfOKbIB6EsrXNJpvkZqkvREWoQm8h-6qF2hZNL_56Z3eTNLUK6iWEsEmWmS-z307mgdCJEq6QntvAinHYoFCa4ERwHwvqu4ID32gYV_b9A7159m47fmfSbdRkl6Ssxj--zSv5j1bhGuhVZ8n-QbPFQ-ECnIN-4QgahuOvdGztVbWbjKqjl2GqDY2OYufma9URGth4WE2Qel_id9MPAhjmtcTDAW73ysw0p6PW1fFe7Zs8n4Jxt8fGPHV6iW6xNYnj6Y0NDnpKZkug-Z__aopode2mfziQ_WqrVqjWBJ_ajBCd-Tnld4hMjCqdsqUE0ygrFyut-awH2uuZWdTMvtommmUczZht4Enag1ADMlMPbSOR6dLYX5asIpDQ_EKnJG7E2a3zaMGFDYNbQQvNi_u7dinch5C8e6KedV5lipKz4r1T3GQJKIiNhigRjqc1tJrtFJymVfs6mpODDbRSqh-5gRYfrbI20bmFggNQcGag4AyVY6HgfIWCk0NhCz1fXT61bnDWHANz4tdTLCWQMxYol4aSRaHQdeE8jzORhIp4ygeeJiQXDc6iQPjA1CRwVV93RyBulMCqso0qAwDADnICFQiV6HoCnAFXCUImBAhGcZ9wylyxi05zscS5TPQs-_GM-HfRcTF0ZMulfDcoKGT78ygrtxjkFhdy2_vN4_fR8gSvB6iSvo3lITDHlB1loPgEzG5tHw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+gap+photoluminescence+of+n-type+tensile-strained+Ge-on-Si&rft.jtitle=Applied+physics+letters&rft.au=Sun%2C+Xiaochen&rft.au=Liu%2C+Jifeng&rft.au=Kimerling%2C+Lionel+C.&rft.au=Michel%2C+Jurgen&rft.date=2009-07-06&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=95&rft.issue=1&rft_id=info:doi/10.1063%2F1.3170870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3170870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon