Direct gap photoluminescence of n -type tensile-strained Ge-on-Si
Room temperature direct gap photoluminescence (PL) was observed from n -type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n -type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases wit...
Saved in:
Published in | Applied physics letters Vol. 95; no. 1; pp. 011911 - 011911-3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Institute of Physics
06.07.2009
|
Online Access | Get full text |
Cover
Loading…
Abstract | Room temperature direct gap photoluminescence (PL) was observed from
n
-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with
n
-type doping due to a higher electron population in the direct
Γ
valley as a result of increased Fermi level. The direct gap emission also increases with temperature due to thermal excitation of electrons into the direct
Γ
valley, exhibiting robustness to heating effects. These unique properties of direct gap emission in an indirect gap material agree with our theoretical model and make Ge a promising light emitting material in 1550 nm communication band. |
---|---|
AbstractList | Room temperature direct gap photoluminescence (PL) was observed from n-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n-type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases with temperature due to thermal excitation of electrons into the direct Γ valley, exhibiting robustness to heating effects. These unique properties of direct gap emission in an indirect gap material agree with our theoretical model and make Ge a promising light emitting material in 1550 nm communication band. Room temperature direct gap photoluminescence (PL) was observed from n -type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n -type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases with temperature due to thermal excitation of electrons into the direct Γ valley, exhibiting robustness to heating effects. These unique properties of direct gap emission in an indirect gap material agree with our theoretical model and make Ge a promising light emitting material in 1550 nm communication band. |
Author | Sun, Xiaochen Michel, Jurgen Kimerling, Lionel C. Liu, Jifeng |
Author_xml | – sequence: 1 givenname: Xiaochen surname: Sun fullname: Sun, Xiaochen email: sunxc@mit.edu. organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA – sequence: 2 givenname: Jifeng surname: Liu fullname: Liu, Jifeng organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA – sequence: 3 givenname: Lionel surname: Kimerling middlename: C. fullname: Kimerling, Lionel C. organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA – sequence: 4 givenname: Jurgen surname: Michel fullname: Michel, Jurgen organization: Microphotonics Center, Massachusetts Institute of Technology, Bldg. 13-4118, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA |
BookMark | eNp1kEFLwzAYhoNMcE4P_oNcPWTL17RJehHG1CkMPKjnkKZfNdKlpYmH_Xs7Nj2Inj5eeN6Xj-ecTEIXkJAr4HPgUixgLkBxrfgJmQJXigkAPSFTzrlgsizgjJzH-DHGIhNiSpa3fkCX6Jvtaf_epa793PqA0WFwSLuGBsrSrkeaMETfIotpsCNQ0zWyLrBnf0FOG9tGvDzeGXm9v3tZPbDN0_pxtdwwJwqeGGIGulJNJjVWpa5B5irPXVVb3Yi8KbiEGl0NripVXfAsQwmqkKClyEqrpJiRxWHXDV2MAzbG-WST78L-o9YAN3sDBszRwNi4_tXoB7-1w-5P9ubAxu_V_-GDMjMqMz_KxBdgAnFX |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_7567_APEX_8_092101 crossref_primary_10_1016_j_tsf_2009_10_062 crossref_primary_10_1063_1_3352048 crossref_primary_10_4236_opj_2018_82002 crossref_primary_10_7567_JJAP_50_04DP08 crossref_primary_10_1021_acsaelm_1c00373 crossref_primary_10_1109_JPHOT_2012_2224101 crossref_primary_10_1155_2012_768605 crossref_primary_10_6111_JKCGCT_2011_21_4_153 crossref_primary_10_3938_jkps_64_1430 crossref_primary_10_1063_1_4802199 crossref_primary_10_1063_1_4874800 crossref_primary_10_1007_s13391_013_3207_y crossref_primary_10_1016_j_jcrysgro_2022_126766 crossref_primary_10_7498_aps_67_20172680 crossref_primary_10_1186_s11671_016_1682_4 crossref_primary_10_1364_OL_35_000679 crossref_primary_10_1016_j_mssp_2014_01_038 crossref_primary_10_1149_2_0091701jss crossref_primary_10_1063_1_4959147 crossref_primary_10_1063_1_4804266 crossref_primary_10_1016_j_tsf_2013_11_027 crossref_primary_10_1088_1361_6463_ab5dcd crossref_primary_10_1016_j_jlumin_2020_117539 crossref_primary_10_3938_jkps_64_98 crossref_primary_10_1149_2_0351609jss crossref_primary_10_1088_1361_6641_aae62e crossref_primary_10_3938_jkps_63_1034 crossref_primary_10_1063_1_5130567 crossref_primary_10_1088_1674_4926_39_6_061001 crossref_primary_10_1088_1674_4926_39_6_061004 crossref_primary_10_1088_1674_4926_39_6_061006 crossref_primary_10_1088_1361_6528_aa5b3d crossref_primary_10_1016_j_tsf_2013_10_136 crossref_primary_10_1039_c3nr34258a crossref_primary_10_1063_5_0019959 crossref_primary_10_1063_1_3559231 crossref_primary_10_1080_00387010_2019_1660683 crossref_primary_10_1109_TED_2019_2961738 crossref_primary_10_1002_aelm_202300288 crossref_primary_10_1364_PRJ_1_000102 crossref_primary_10_1016_j_sse_2019_02_007 crossref_primary_10_1016_j_optmat_2022_112633 crossref_primary_10_1063_1_3429085 crossref_primary_10_1088_2043_6262_6_1_015013 crossref_primary_10_1364_PRJ_5_000239 crossref_primary_10_1016_j_mssp_2023_107433 crossref_primary_10_1080_09500340_2020_1811412 crossref_primary_10_3938_jkps_64_443 crossref_primary_10_1038_srep26607 crossref_primary_10_1063_1_5088012 crossref_primary_10_7567_JJAP_57_021303 crossref_primary_10_1021_acsanm_0c03373 crossref_primary_10_1088_1361_6463_aa8ed5 crossref_primary_10_3389_fnins_2021_732368 crossref_primary_10_7567_JJAP_56_01AB05 crossref_primary_10_1063_5_0020489 crossref_primary_10_7498_aps_61_036202 crossref_primary_10_1587_elex_11_20142008 crossref_primary_10_1063_1_3592837 crossref_primary_10_1103_PhysRevB_87_195420 crossref_primary_10_1016_j_jcrysgro_2012_12_014 crossref_primary_10_1016_j_tsf_2018_07_028 crossref_primary_10_1109_LED_2019_2910047 crossref_primary_10_1063_1_3580605 crossref_primary_10_1364_PRJ_491763 crossref_primary_10_1063_1_4803927 crossref_primary_10_1364_OME_2_001462 crossref_primary_10_1007_s11664_019_07254_y crossref_primary_10_1364_OL_476517 crossref_primary_10_1088_1361_6463_aa8bcf crossref_primary_10_1063_1_4931707 crossref_primary_10_1063_1_3327435 crossref_primary_10_3938_jkps_67_1646 crossref_primary_10_1364_OME_7_000800 crossref_primary_10_1088_1674_1056_26_12_127402 crossref_primary_10_1007_s10946_020_09853_1 crossref_primary_10_1063_1_4829621 crossref_primary_10_1088_1402_4896_ab182b crossref_primary_10_1063_1_4891755 crossref_primary_10_1142_S021798491850224X crossref_primary_10_1021_acs_nanolett_0c00421 crossref_primary_10_1143_APEX_5_015701 crossref_primary_10_1063_5_0044901 crossref_primary_10_5402_2012_428690 crossref_primary_10_1063_1_3275863 crossref_primary_10_1063_1_3647572 crossref_primary_10_1038_s41598_019_48032_4 crossref_primary_10_3390_nano10051006 crossref_primary_10_1021_cm201648x crossref_primary_10_1063_1_3462400 crossref_primary_10_1016_j_mssp_2023_107516 crossref_primary_10_35848_1347_4065_ab867d crossref_primary_10_1016_j_jcrysgro_2012_11_002 crossref_primary_10_1016_j_tsf_2011_10_121 crossref_primary_10_1021_nn103149c crossref_primary_10_1016_j_optcom_2016_08_066 crossref_primary_10_1039_D2TC02862J crossref_primary_10_1063_1_3700804 crossref_primary_10_1364_OE_432324 crossref_primary_10_7498_aps_64_206102 crossref_primary_10_1007_s12200_012_0200_2 crossref_primary_10_1063_1_3297883 crossref_primary_10_1063_1_4948240 crossref_primary_10_3938_jkps_64_715 crossref_primary_10_1021_cm403801b crossref_primary_10_1016_j_apsusc_2016_09_019 crossref_primary_10_1063_1_3691790 crossref_primary_10_1063_1_4754625 crossref_primary_10_1063_1_3521391 crossref_primary_10_1063_1_4862890 crossref_primary_10_1134_S1063784215030214 crossref_primary_10_1088_1674_1056_25_12_126104 crossref_primary_10_1016_j_tsf_2013_10_082 crossref_primary_10_1364_OE_22_003902 crossref_primary_10_1063_1_4818945 crossref_primary_10_1016_j_proeng_2017_11_153 crossref_primary_10_1088_0268_1242_29_11_115028 crossref_primary_10_1038_srep24802 crossref_primary_10_1063_1_4883466 crossref_primary_10_3390_photonics1030162 crossref_primary_10_1038_lsa_2015_131 crossref_primary_10_1038_s41598_018_35224_7 crossref_primary_10_3390_electronics6010019 crossref_primary_10_1364_OE_25_021286 crossref_primary_10_1063_1_3655679 crossref_primary_10_1016_j_tsf_2015_08_044 crossref_primary_10_1016_j_pcrysgrow_2015_11_001 crossref_primary_10_1063_1_3651196 crossref_primary_10_1063_1_3494594 crossref_primary_10_1002_adom_202301028 crossref_primary_10_1016_j_tsf_2013_04_020 crossref_primary_10_1016_j_vacuum_2022_111269 crossref_primary_10_1038_nphoton_2014_321 crossref_primary_10_1088_0022_3727_48_21_215103 crossref_primary_10_1364_OE_415230 crossref_primary_10_1103_PhysRevB_88_045204 crossref_primary_10_1063_5_0203305 crossref_primary_10_1016_j_cap_2013_11_009 crossref_primary_10_35848_1347_4065_ad2137 crossref_primary_10_1088_1361_6528_aa565c crossref_primary_10_1016_j_tsf_2013_08_117 crossref_primary_10_1002_pssr_200903294 crossref_primary_10_1088_0953_8984_24_19_195802 crossref_primary_10_1103_PhysRevB_84_205307 crossref_primary_10_7567_APEX_9_052101 crossref_primary_10_1063_1_4874615 crossref_primary_10_1515_nanoph_2021_0122 crossref_primary_10_1063_1_4745020 crossref_primary_10_1134_S1063782615060160 crossref_primary_10_1016_j_mssp_2015_04_024 crossref_primary_10_1063_1_4892302 crossref_primary_10_1364_OE_20_008228 crossref_primary_10_1016_j_tsf_2015_09_075 crossref_primary_10_1142_S0217979224501716 crossref_primary_10_1088_0268_1242_30_4_045007 crossref_primary_10_1103_PhysRevLett_110_177404 crossref_primary_10_1364_OE_413503 crossref_primary_10_1063_1_3562589 crossref_primary_10_7567_APEX_11_011304 crossref_primary_10_1016_j_mssp_2019_05_005 crossref_primary_10_1007_s12200_012_0193_x crossref_primary_10_1063_1_4831798 crossref_primary_10_1063_1_4800015 crossref_primary_10_1016_j_spmi_2017_06_020 crossref_primary_10_1149_2_0151503jss crossref_primary_10_7567_JJAP_54_052101 crossref_primary_10_1016_j_tsf_2015_04_040 crossref_primary_10_1016_j_pcrysgrow_2017_04_004 crossref_primary_10_1016_j_mssp_2016_09_008 crossref_primary_10_1088_0268_1242_31_4_043002 crossref_primary_10_1364_OE_24_009132 crossref_primary_10_1063_1_5012512 crossref_primary_10_1109_JSTQE_2009_2027445 crossref_primary_10_1364_OE_21_028219 crossref_primary_10_7567_JJAP_56_032102 crossref_primary_10_1016_j_sse_2015_01_008 crossref_primary_10_1016_j_joule_2021_07_011 crossref_primary_10_1109_JQE_2019_2956347 crossref_primary_10_1109_JSTQE_2012_2206802 crossref_primary_10_1016_j_mssp_2024_108299 crossref_primary_10_1021_nl303694c crossref_primary_10_1088_1674_1056_25_5_057804 crossref_primary_10_1063_1_3673538 crossref_primary_10_1063_1_4801805 crossref_primary_10_1088_1361_6641_aa8499 crossref_primary_10_1063_1_4894870 crossref_primary_10_1016_j_jcrysgro_2012_03_023 crossref_primary_10_1021_nl401860f crossref_primary_10_1063_1_5009327 crossref_primary_10_1103_PhysRevB_93_125206 crossref_primary_10_15625_0868_3166_23_4_3207 crossref_primary_10_1088_1674_1056_23_9_096103 crossref_primary_10_1143_JJAP_50_04DP08 crossref_primary_10_3390_cryst11080905 crossref_primary_10_1021_acs_cgd_0c00125 crossref_primary_10_1103_PhysRevB_86_035306 crossref_primary_10_1109_JPHOT_2010_2046026 crossref_primary_10_7498_aps_64_204208 crossref_primary_10_1063_1_4878619 crossref_primary_10_1103_PhysRevMaterials_3_034602 crossref_primary_10_3390_ma9100803 crossref_primary_10_1016_j_vacuum_2019_109047 crossref_primary_10_1016_j_mssp_2013_04_022 crossref_primary_10_1016_j_tsf_2011_10_090 |
Cites_doi | 10.1063/1.1525865 10.1364/OE.15.011272 10.1016/0038-1101(78)90210-1 10.1088/0022-3719/12/13/004 10.1103/PhysRevB.39.1871 10.1063/1.125187 10.1103/PhysRevLett.57.1777 10.1063/1.1943507 10.1103/PhysRevB.70.155309 10.1016/0038-1098(76)91286-2 10.1364/OE.14.009203 10.1063/1.1564868 |
ContentType | Journal Article |
Copyright | 2009 American Institute of Physics |
Copyright_xml | – notice: 2009 American Institute of Physics |
DBID | AAYXX CITATION |
DOI | 10.1063/1.3170870 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
EndPage | 011911-3 |
ExternalDocumentID | 10_1063_1_3170870 apl |
GrantInformation_xml | – fundername: UNSPECIFIED |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 6TJ A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH AAYJJ ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P2P RIP RNS ROL RQS SJN TAE TN5 UCJ UPT UQL WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION |
ID | FETCH-LOGICAL-c350t-ee218b7f268eb98d164744cbda8f34f5061decd1cb97d5022e61756186329a763 |
ISSN | 0003-6951 |
IngestDate | Tue Jul 01 03:04:28 EDT 2025 Thu Apr 24 23:12:53 EDT 2025 Fri Jun 21 00:18:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-ee218b7f268eb98d164744cbda8f34f5061decd1cb97d5022e61756186329a763 |
ParticipantIDs | crossref_citationtrail_10_1063_1_3170870 crossref_primary_10_1063_1_3170870 scitation_primary_10_1063_1_3170870Direct_gap_photolumi |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-06 |
PublicationDateYYYYMMDD | 2009-07-06 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-06 day: 06 |
PublicationDecade | 2000 |
PublicationTitle | Applied physics letters |
PublicationYear | 2009 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Luan, H.; Lim, D.; Lee, K.; Chen, K.; Sandland, J.; Wada, K.; Kimerling, L. 1999; 75 Liu, J.; Sun, X.; Pan, D.; Wang, X.; Kimerling, L.; Koch, T.; Michel, J. 2007; 15 Ishikawa, Y.; Ishikawa, Y.; Wada, K.; Liu, J.; Cannon, D.; Luan, H.; Michel, J.; Kimerling, L. 2005; 98 Mayer, A.; Lightowlers, E. 1979; 12 Ishikawa, Y.; Wada, K.; Cannon, D.; Liu, J.; Luan, H.; Kimerling, L. 2003; 82 Liu, J.; Cannon, D.; Ishikawa, Y.; Wada, K.; Danielson, D.; Jongthammanurak, S.; Michel, J.; Kimerling, L. 2004; 70 Zhdanova, V.; Kontorova, T. 1966; 7 Klingenstein, W.; Schweizer, H. 1978; 21 Van de Walle, C. 1989; 39 John, S.; Soukoulis, C.; Cohen, M.; Economou, E. 1986; 57 Fang, A.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.; Bowers, J. 2006; 14 van Driel, H.; Elci, A.; Bessey, J.; Scully, M. 1976; 20 Groenert, M.; Leitz, C.; Pitera, A.; Yang, V.; Lee, H.; Ram, R.; Fitzerald, E. 2003; 93 (2023070222434824100_c15) 1996 (2023070222434824100_c9) 2004; 70 (2023070222434824100_c14) 1986; 57 (2023070222434824100_c12) 1966; 7 (2023070222434824100_c7) 1976; 20 (2023070222434824100_c13) 1989; 39 (2023070222434824100_c8) 2003; 82 (2023070222434824100_c2) 2003; 93 (2023070222434824100_c11) 1999; 75 (2023070222434824100_c5) 1964 (2023070222434824100_c6) 1978; 21 (2023070222434824100_c4) 1979; 12 (2023070222434824100_c1) 2006; 14 (2023070222434824100_c3) 2007; 15 (2023070222434824100_c10) 2005; 98 |
References_xml | – volume: 93 start-page: 362 year: 2003 publication-title: J. Appl. Phys. doi: 10.1063/1.1525865 – volume: 15 start-page: 11272 year: 2007 publication-title: Opt. Express doi: 10.1364/OE.15.011272 – volume: 21 start-page: 1371 year: 1978 publication-title: Solid-State Electron. doi: 10.1016/0038-1101(78)90210-1 – volume: 12 start-page: L507 year: 1979 publication-title: J. Phys. C doi: 10.1088/0022-3719/12/13/004 – volume: 39 start-page: 1871 year: 1989 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.1871 – volume: 75 start-page: 2909 year: 1999 publication-title: Appl. Phys. Lett. doi: 10.1063/1.125187 – volume: 57 start-page: 1777 year: 1986 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.1777 – volume: 98 start-page: 013501 year: 2005 publication-title: J. Appl. Phys. doi: 10.1063/1.1943507 – volume: 70 start-page: 155309 year: 2004 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.155309 – volume: 7 start-page: 2685 year: 1966 publication-title: Sov. Phys. Solid State – volume: 20 start-page: 837 year: 1976 publication-title: Solid State Commun. doi: 10.1016/0038-1098(76)91286-2 – volume: 14 start-page: 9203 year: 2006 publication-title: Opt. Express doi: 10.1364/OE.14.009203 – volume: 82 start-page: 2044 year: 2003 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1564868 – volume: 75 start-page: 2909 year: 1999 ident: 2023070222434824100_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.125187 – volume: 7 start-page: 2685 year: 1966 ident: 2023070222434824100_c12 publication-title: Sov. Phys. Solid State – volume: 20 start-page: 837 year: 1976 ident: 2023070222434824100_c7 publication-title: Solid State Commun. doi: 10.1016/0038-1098(76)91286-2 – volume: 12 start-page: L507 year: 1979 ident: 2023070222434824100_c4 publication-title: J. Phys. C doi: 10.1088/0022-3719/12/13/004 – volume: 21 start-page: 1371 year: 1978 ident: 2023070222434824100_c6 publication-title: Solid-State Electron. doi: 10.1016/0038-1101(78)90210-1 – volume: 70 start-page: 155309 year: 2004 ident: 2023070222434824100_c9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.155309 – volume: 39 start-page: 1871 year: 1989 ident: 2023070222434824100_c13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.1871 – volume: 57 start-page: 1777 year: 1986 ident: 2023070222434824100_c14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.1777 – volume: 82 start-page: 2044 year: 2003 ident: 2023070222434824100_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1564868 – start-page: 21 year: 1964 ident: 2023070222434824100_c5 – volume: 15 start-page: 11272 year: 2007 ident: 2023070222434824100_c3 publication-title: Opt. Express doi: 10.1364/OE.15.011272 – volume: 98 start-page: 013501 year: 2005 ident: 2023070222434824100_c10 publication-title: J. Appl. Phys. doi: 10.1063/1.1943507 – volume: 93 start-page: 362 year: 2003 ident: 2023070222434824100_c2 publication-title: J. Appl. Phys. doi: 10.1063/1.1525865 – volume: 14 start-page: 9203 year: 2006 ident: 2023070222434824100_c1 publication-title: Opt. Express doi: 10.1364/OE.14.009203 – start-page: 33 volume-title: Handbook Series on Semiconductor Parameters year: 1996 ident: 2023070222434824100_c15 |
SSID | ssj0005233 |
Score | 2.4360409 |
Snippet | Room temperature direct gap photoluminescence (PL) was observed from
n
-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with
n
-type... Room temperature direct gap photoluminescence (PL) was observed from n-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n-type doping... |
SourceID | crossref scitation |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 011911 |
Title | Direct gap photoluminescence of n -type tensile-strained Ge-on-Si |
URI | http://dx.doi.org/10.1063/1.3170870 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IupBfOKbIB6EsrXNJpvkZqkvREWoQm8h-6qF2hZNL_56Z3eTNLUK6iWEsEmWmS-z307mgdCJEq6QntvAinHYoFCa4ERwHwvqu4ID32gYV_b9A7159m47fmfSbdRkl6Ssxj--zSv5j1bhGuhVZ8n-QbPFQ-ECnIN-4QgahuOvdGztVbWbjKqjl2GqDY2OYufma9URGth4WE2Qel_id9MPAhjmtcTDAW73ysw0p6PW1fFe7Zs8n4Jxt8fGPHV6iW6xNYnj6Y0NDnpKZkug-Z__aopode2mfziQ_WqrVqjWBJ_ajBCd-Tnld4hMjCqdsqUE0ygrFyut-awH2uuZWdTMvtommmUczZht4Enag1ADMlMPbSOR6dLYX5asIpDQ_EKnJG7E2a3zaMGFDYNbQQvNi_u7dinch5C8e6KedV5lipKz4r1T3GQJKIiNhigRjqc1tJrtFJymVfs6mpODDbRSqh-5gRYfrbI20bmFggNQcGag4AyVY6HgfIWCk0NhCz1fXT61bnDWHANz4tdTLCWQMxYol4aSRaHQdeE8jzORhIp4ygeeJiQXDc6iQPjA1CRwVV93RyBulMCqso0qAwDADnICFQiV6HoCnAFXCUImBAhGcZ9wylyxi05zscS5TPQs-_GM-HfRcTF0ZMulfDcoKGT78ygrtxjkFhdy2_vN4_fR8gSvB6iSvo3lITDHlB1loPgEzG5tHw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+gap+photoluminescence+of+n-type+tensile-strained+Ge-on-Si&rft.jtitle=Applied+physics+letters&rft.au=Sun%2C+Xiaochen&rft.au=Liu%2C+Jifeng&rft.au=Kimerling%2C+Lionel+C.&rft.au=Michel%2C+Jurgen&rft.date=2009-07-06&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=95&rft.issue=1&rft_id=info:doi/10.1063%2F1.3170870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3170870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |