Quality Prediction Modeling for Industrial Processes Using Multiscale Attention-Based Convolutional Neural Network

Soft sensors have been increasingly applied for quality prediction in complex industrial processes, which often have different scales of topology and highly coupled spatiotemporal features. However, the existing soft sensing models usually face difficulties in extracting the multiscale local spatiot...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 5; pp. 2696 - 2707
Main Authors Yuan, Xiaofeng, Huang, Lingfeng, Ye, Lingjian, Wang, Yalin, Wang, Kai, Yang, Chunhua, Gui, Weihua, Shen, Feifan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Soft sensors have been increasingly applied for quality prediction in complex industrial processes, which often have different scales of topology and highly coupled spatiotemporal features. However, the existing soft sensing models usually face difficulties in extracting the multiscale local spatiotemporal features in multicoupled complex process data and harnessing them to their full potential to improve the prediction performance. Therefore, a multiscale attention-based CNN (MSACNN) is proposed in this article to alleviate such problems. In MSACNN, convolutional kernels of different sizes are first designed in parallel in the convolutional layers, which can generate feature maps containing local spatiotemporal features at different scales. Meanwhile, a channel-wise attention mechanism is designed on the feature maps in parallel to get their attention weights, representing the significance of the local spatiotemporal feature at different scales. The superiority of the proposed MSACNN over the other state-of-the-art methods is validated through the performance evaluation in two real industrial processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2024.3365068