LOCAL STABILITY OF TRAVELLING FRONTS FOR A DAMPED WAVE EQUATION
The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot...
Saved in:
Published in | Acta mathematica scientia Vol. 33; no. 1; pp. 75 - 83 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2013
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
Subjects | |
Online Access | Get full text |
ISSN | 0252-9602 1572-9087 |
DOI | 10.1016/S0252-9602(12)60195-7 |
Cover
Summary: | The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot is known about the local stability of travelling fronts in parabolic systems, for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type. However, for the combustion or monostable type of V, the problem is much more complicated. In this paper, a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established. And then, the result is extended to the damped wave equation with a case of monostable pushed front. |
---|---|
Bibliography: | travelling front; local stability; damped wave equation The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot is known about the local stability of travelling fronts in parabolic systems, for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type. However, for the combustion or monostable type of V, the problem is much more complicated. In this paper, a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established. And then, the result is extended to the damped wave equation with a case of monostable pushed front. 42-1227/O ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(12)60195-7 |