LOCAL STABILITY OF TRAVELLING FRONTS FOR A DAMPED WAVE EQUATION

The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 33; no. 1; pp. 75 - 83
Main Author 罗操
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2013
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(12)60195-7

Cover

More Information
Summary:The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot is known about the local stability of travelling fronts in parabolic systems, for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type. However, for the combustion or monostable type of V, the problem is much more complicated. In this paper, a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established. And then, the result is extended to the damped wave equation with a case of monostable pushed front.
Bibliography:travelling front; local stability; damped wave equation
The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot is known about the local stability of travelling fronts in parabolic systems, for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type. However, for the combustion or monostable type of V, the problem is much more complicated. In this paper, a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established. And then, the result is extended to the damped wave equation with a case of monostable pushed front.
42-1227/O
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(12)60195-7