Biochemical characterization of the novel rice kinesin K23 and its kinetic study using fluorescence resonance energy transfer between an intrinsic tryptophan residue and a fluorescent ATP analogue

We previously demonstrated that the rice kinesin K16, which belongs to the kinesin-7 subfamily, has unique enzymatic properties and atomic structure within key functional regions. In this study, we focused on a novel rice plant kinesin, K23, which also belongs to the kinesin-7 subfamily. The biochem...

Full description

Saved in:
Bibliographic Details
Published inJournal of biochemistry (Tokyo) Vol. 149; no. 5; pp. 539 - 550
Main Authors Umezu, Nozomi, Hanzawa, Nobue, Yamada, Masafumi D, Kondo, Kazunori, Mitsui, Toshiaki, Maruta, Shinsaku
Format Journal Article
LanguageEnglish
Published England 01.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We previously demonstrated that the rice kinesin K16, which belongs to the kinesin-7 subfamily, has unique enzymatic properties and atomic structure within key functional regions. In this study, we focused on a novel rice plant kinesin, K23, which also belongs to the kinesin-7 subfamily. The biochemical characterization of the K23 motor domain (K23MD) was studied and compared with the rice kinesin K16 and other related kinesins. K23 exhibits ∼45-fold (1.3 Pi mol(-1) site mol(-1) s(-1)) lower microtubule-dependent ATPase activity than conventional kinesins, whereas its affinity for microtubules is comparable with conventional kinesins. MgADP-free K23 is unstable compared with the unusually stable MgADP-free K16MD. The enzymatic properties of K23MD are somewhat different from those of K16. We used a fluorescent ATP analogue 2'(3')-O-(N'-methylanthraniloyl)-ATP (mant-ATP) for the kinetic characterization of K23. The fluorescence of mant-ATP was not significantly altered during its hydrolysis by K23. However, significant fluorescence resonance energy transfer (FRET) between mant-ATP and W21 in the motor domain was observed. The kinetic study using FRET revealed that K23 has unique kinetic characteristics when compared with other kinesins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvr012