Spines of the porcupine fish: Structure, composition, and mechanical properties
This paper explores the structure, composition, and mechanical properties of porcupine fish spines for the first time. The spine was found to be composed of nanocrystalline hydroxyapatite, protein (collagen), and water using X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermogravimet...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 73; pp. 38 - 49 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper explores the structure, composition, and mechanical properties of porcupine fish spines for the first time. The spine was found to be composed of nanocrystalline hydroxyapatite, protein (collagen), and water using X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. Microstructures have mineralized fibrillar sheets in the longitudinal direction and in a radial orientation in the transverse direction that were observed using light and electron microscopy. Based on the images, the hierarchical structure of the spine shows both concentric and radial reinforcement. Mechanical properties were obtained using cantilever beam and nanoindentation tests. A tapered cantilever beam model was developed and compared to that of a uniform cantilever beam. The tapered beam model showed that while the stresses experienced were similar to those of the uniform beam, the location of the maximum stress was near the distal region of the beam rather than at the base, which allows the porcupine fish to conserve energy and resources if the spine is fractured. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2017.02.029 |