Does the Gamma-Ray Binary LS I + 61°303 Harbor a Magnetar?

Abstract The high-mass X-ray binary LS I + 61°303 is also cataloged as a gamma-ray binary as a result of frequent outbursts at TeV photon energies. The system has released two soft-gamma flares in the past, suggesting a magnetar interpretation for the compact primary. This inference has recently gai...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 940; no. 2; pp. 128 - 138
Main Authors Suvorov, Arthur G., Glampedakis, Kostas
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.12.2022
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The high-mass X-ray binary LS I + 61°303 is also cataloged as a gamma-ray binary as a result of frequent outbursts at TeV photon energies. The system has released two soft-gamma flares in the past, suggesting a magnetar interpretation for the compact primary. This inference has recently gained significant traction following the discovery of transient radio pulses, detected in some orbital phases from the system, as the measured rotation and tentative spin-down rates imply a polar magnetic field strength of B p ≳ 10 14 G if the star is decelerating via magnetic dipole braking. In this paper, we scrutinize magnetic field estimates for the primary in LS I + 61°303 by analyzing the compatibility of available data with the system’s accretion dynamics, spin evolution, age limits, gamma-ray emissions, and radio pulsar activation. We find that the neutron star’s age and spin evolution are theoretically difficult to reconcile unless a strong propeller torque is in operation. This torque could be responsible for the bulk of even the maximum allowed spin-down, potentially weakening the inferred magnetic field by more than an order of magnitude.
Bibliography:AAS41435
High-Energy Phenomena and Fundamental Physics
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac9b48