Warm Forming Behavior of Magnesium Alloy Sheet in Manufacturing of Window Regulator Rail

Recently, as the demands to improve automotive fuel efficiency grow, several attempts are being conducted on the development of lightweight automotive components using magnesium (Mg) alloy sheets having the highest specific strength among metal materials. In a window regulator module which is a swit...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automotive technology Vol. 20; no. Suppl 1; pp. 67 - 78
Main Authors Park, Hyeonil, Lee, Jinwoo, Kim, Se-Jong, Lee, Youngseon, Kim, Daeyong
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society of Automotive Engineers 01.11.2019
Springer Nature B.V
한국자동차공학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recently, as the demands to improve automotive fuel efficiency grow, several attempts are being conducted on the development of lightweight automotive components using magnesium (Mg) alloy sheets having the highest specific strength among metal materials. In a window regulator module which is a switchgear that raises and lowers the automotive side window pane, the weight of the rail accounts for about 40 % of the total weight, while the production cost of the rail is about 10 % of the total cost, that is the weight reduction effect is higher than the cost burden. Therefore, the application of Mg alloy sheets to the window regulator rails is more likely to be commercialized. The aim of this study is to investigate the warm forming behavior of Mg alloy sheets in the manufacturing of window regulator rails at the temperature range from 150 to 250 °C. AZ31B Mg alloy sheets with a thickness of 1.4 mm were used, and their mechanical properties were evaluated at the warm temperature range. The warm forming behavior was predicted by the finite element simulation. Based on the simulation results, the Mg alloy window regulator rail was successfully manufactured without fracture using the warm forming.
ISSN:1229-9138
1976-3832
DOI:10.1007/s12239-019-0129-1