Noise-Factorized Disentangled Representation Learning for Generalizable Motor Imagery EEG Classification

Motor Imagery (MI) Electroencephalography (EEG) is one of the most common Brain-Computer Interface (BCI) paradigms that has been widely used in neural rehabilitation and gaming. Although considerable research efforts have been dedicated to developing MI EEG classification algorithms, they are mostly...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 2; pp. 765 - 776
Main Authors Han, Jinpei, Gu, Xiao, Yang, Guang-Zhong, Lo, Benny
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Motor Imagery (MI) Electroencephalography (EEG) is one of the most common Brain-Computer Interface (BCI) paradigms that has been widely used in neural rehabilitation and gaming. Although considerable research efforts have been dedicated to developing MI EEG classification algorithms, they are mostly limited in handling scenarios where the training and testing data are not from the same subject or session. Such poor generalization capability significantly limits the realization of BCI in real-world applications. In this paper, we proposed a novel framework to disentangle the representation of raw EEG data into three components, subject/session-specific, MI-task-specific, and random noises, so that the subject/session-specific feature extends the generalization capability of the system. This is realized by a joint discriminative and generative framework, supported by a series of fundamental training losses and training strategies. We evaluated our framework on three public MI EEG datasets, and detailed experimental results show that our method can achieve superior performance by a large margin compared to current state-of-the-art benchmark algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2023.3337072