Optimized Adaptive Fuzzy Security Control of Nonlinear Systems With Prescribed Tracking Performance

This article studies the optimized fuzzy prescribed performance control problem for nonlinear nonstrict-feedback systems under denial-of-service (DoS) attacks. A fuzzy estimator is delicately designed to model the immeasurable system states in the presence of DoS attacks. To achieve the preset track...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 12; pp. 1 - 13
Main Authors Zhang, Lili, Che, Wei-Wei, Deng, Chao, Wu, Zheng-Guang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article studies the optimized fuzzy prescribed performance control problem for nonlinear nonstrict-feedback systems under denial-of-service (DoS) attacks. A fuzzy estimator is delicately designed to model the immeasurable system states in the presence of DoS attacks. To achieve the preset tracking performance, a simper prescribed performance error transformation is constructed considering the characteristics of DoS attacks, which helps obtain a novel Hamilton-Jacobi-Bellman equation to derive the optimized prescribed performance controller. Furthermore, the fuzzy-logic system, combined with the reinforcement learning (RL) technique, is employed to approximate the unknown nonlinearity existing in the prescribed performance controller design process. An optimized adaptive fuzzy security control law is then proposed for the considered nonlinear nonstrict-feedback systems subject to DoS attacks. Through the Lyapunov stability analysis, the tracking error is proved to approach the predefined region by the preset finite time, even in the presence of DoS attacks. Meanwhile, the consumed control resources are minimized due to the RL-based optimized algorithm. Finally, an actual example with comparisons verifies the effectiveness of the proposed control algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2023.3234295