Efficient and compact Yb:YAG ring laser
An efficient and compact Yb:YAG ring laser was demonstrated with a slope efficiency of 39.0% with respect to the absorbed power. The design issues for using Yb:YAG as the gain medium in the reentrant multipass ring laser are discussed. The high absorption coefficient and low quantum defect of Yb:YAG...
Saved in:
Published in | IEEE journal of quantum electronics Vol. 42; no. 8; pp. 791 - 796 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.08.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient and compact Yb:YAG ring laser was demonstrated with a slope efficiency of 39.0% with respect to the absorbed power. The design issues for using Yb:YAG as the gain medium in the reentrant multipass ring laser are discussed. The high absorption coefficient and low quantum defect of Yb:YAG make it an ideal gain medium for the multipass ring cavity to fulfil reentrant condition and reduce reabsorption loss. The absorption characteristics of a 20-at.% doped Yb:YAG crystal and the optimum ratio of absorption depth to Yb:YAG thickness were measured. The degrees of linear polarization were 99.0% and 94.1% in planar N=2 and nonplanar (N,M)=(2,1) ring lasers, respectively. The multipass ring cavities can be applied in a compact mode-locked laser with long round-trip length |
---|---|
AbstractList | An efficient and compact Yb:YAG ring laser was demonstrated with a slope efficiency of 39.0% with respect to the absorbed power. The design issues for using Yb:YAG as the gain medium in the reentrant multipass ring laser are discussed. The high absorption coefficient and low quantum defect of Yb:YAG make it an ideal gain medium for the multipass ring cavity to fulfil reentrant condition and reduce reabsorption loss. The absorption characteristics of a 20-at.% doped Yb:YAG crystal and the optimum ratio of absorption depth to Yb:YAG thickness were measured. The degrees of linear polarization were 99.0% and 94.1% in planar N=2 and nonplanar (N,M)=(2,1) ring lasers, respectively. The multipass ring cavities can be applied in a compact mode-locked laser with long round-trip length |
Author | Jui-Yun Yi Li-Hsuan Chen Sheng-Lung Huang |
Author_xml | – sequence: 1 givenname: J.-Y. surname: Yi fullname: Yi, J.-Y. – sequence: 2 givenname: L.-H. surname: Chen fullname: Chen, L.-H. – sequence: 3 givenname: S.-L. surname: Huang fullname: Huang, S.-L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17998052$$DView record in Pascal Francis |
BookMark | eNp9kE1LAzEQQIMoWD_OHrwsgvS0NZNsPtablFqVggh68BRidiIp22xNtgf_vVtaEDx4CgPvzYR3Qg5jF5GQC6ATAFrfPL3MJoxSOdFKMcYOyAiE0CUo4IdkRCnosoZaHZOTnJfDWFWajsh45n1wAWNf2NgUrlutreuL94_b97t5kUL8LFqbMZ2RI2_bjOf795S83c9epw_l4nn-OL1blI4L2pfWKyFBesZQOmrZR8MbrmrWQKWdVMid16gqrTxtvOCaM4tMgGeg0NEK-SkZ7_auU_e1wdybVcgO29ZG7DbZ6FpCXVGtBvLqD7nsNikOnzNaCiGpBjpA13vIZmdbn2x0IZt1Ciubvg2outZUsIG72XEudTkn9L8INdu8ZshrtnnNLu9giD-GC73tQxf7ZEP7j3e58wIi_l6RQgMH_gNYJIVK |
CODEN | IEJQA7 |
CitedBy_id | crossref_primary_10_1143_JJAP_48_112501 crossref_primary_10_1364_OL_34_002357 crossref_primary_10_1143_JJAP_49_122701 crossref_primary_10_1364_OE_21_031506 |
Cites_doi | 10.1007/BF01081875 10.1109/JQE.2002.802955 10.1364/OL.26.000379 10.1007/s003400050762 10.1364/OL.25.000859 10.1109/JQE.2004.826438 10.1364/AO.41.001075 10.1109/3.892735 10.1364/OL.20.001283 10.1143/JJAP.44.1272 10.1364/OL.21.000875 10.1364/OL.20.000713 10.1364/OL.20.002402 10.1109/2944.902180 10.1364/OL.10.000065 10.1364/JOSAB.20.002061 10.1143/JJAP.44.L361 10.1364/OL.25.000542 10.1364/OL.29.002154 10.1364/JOSAB.20.001975 10.1364/OL.28.000367 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SP 7U5 8FD L7M F28 FR3 H8D |
DOI | 10.1109/JQE.2006.877222 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Aerospace Database Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-1713 |
EndPage | 796 |
ExternalDocumentID | 2341905641 17998052 10_1109_JQE_2006_877222 1658131 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFFNX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ MVM O9- OCL P2P RIA RIE RNS TAE TN5 UPT VH1 XOL ZKB AAYXX CITATION RIG IQODW 7SP 7U5 8FD L7M F28 FR3 H8D |
ID | FETCH-LOGICAL-c350t-af75616f22e6c0a2bd3d3792d148c67e3cf8e7487f0df53832ae251f217ec04e3 |
IEDL.DBID | RIE |
ISSN | 0018-9197 |
IngestDate | Fri Jul 11 07:34:18 EDT 2025 Mon Jun 30 10:27:39 EDT 2025 Mon Jul 21 09:16:41 EDT 2025 Tue Jul 01 03:19:10 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Tue Aug 26 16:40:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Laser resonator Doped materials Laser cavity resonators Absorption coefficients Ytterbium additions Ring resonator Solid state lasers Ring lasers Mode locked laser multipass cell ring laser Linear polarization solid- state laser |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-af75616f22e6c0a2bd3d3792d148c67e3cf8e7487f0df53832ae251f217ec04e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
PQID | 865560810 |
PQPubID | 85483 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1109_JQE_2006_877222 proquest_journals_865560810 pascalfrancis_primary_17998052 ieee_primary_1658131 crossref_citationtrail_10_1109_JQE_2006_877222 proquest_miscellaneous_896194087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-08-00 |
PublicationDateYYYYMMDD | 2006-08-01 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-00 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE journal of quantum electronics |
PublicationTitleAbbrev | JQE |
PublicationYear | 2006 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref10 doi: 10.1007/BF01081875 – ident: ref5 doi: 10.1109/JQE.2002.802955 – ident: ref14 doi: 10.1364/OL.26.000379 – ident: ref13 doi: 10.1007/s003400050762 – ident: ref16 doi: 10.1364/OL.25.000859 – ident: ref6 doi: 10.1109/JQE.2004.826438 – ident: ref21 doi: 10.1364/AO.41.001075 – ident: ref9 doi: 10.1109/3.892735 – ident: ref1 doi: 10.1364/OL.20.001283 – ident: ref7 doi: 10.1143/JJAP.44.1272 – ident: ref3 doi: 10.1364/OL.21.000875 – ident: ref19 doi: 10.1364/OL.20.000713 – ident: ref15 doi: 10.1364/OL.20.002402 – ident: ref8 doi: 10.1109/2944.902180 – ident: ref2 doi: 10.1364/OL.10.000065 – ident: ref20 doi: 10.1364/JOSAB.20.002061 – ident: ref18 doi: 10.1143/JJAP.44.L361 – ident: ref4 doi: 10.1364/OL.25.000542 – ident: ref11 doi: 10.1364/OL.29.002154 – ident: ref12 doi: 10.1364/JOSAB.20.001975 – ident: ref17 doi: 10.1364/OL.28.000367 |
SSID | ssj0014480 |
Score | 1.8266944 |
Snippet | An efficient and compact Yb:YAG ring laser was demonstrated with a slope efficiency of 39.0% with respect to the absorbed power. The design issues for using... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 791 |
SubjectTerms | Absorption Crystal defects Crystals Diode lasers Doped-insulator lasers and other solid state lasers Exact sciences and technology Fundamental areas of phenomenology (including applications) Gain Holes Laser excitation Laser mode locking Laser noise Laser optical systems: design and operation Laser resonator Lasers Linear polarization multipass cell Optical resonators Optics Optimization Physics Pump lasers Resonators, cavities, amplifiers, arrays, and rings ring laser Ring lasers Solid lasers solid-state laser Ultrafast optics |
Title | Efficient and compact Yb:YAG ring laser |
URI | https://ieeexplore.ieee.org/document/1658131 https://www.proquest.com/docview/865560810 https://www.proquest.com/docview/896194087 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SQKE59JE0dJt28aGQHuKNLMmS3Vsom4ZAAoEGkpOR5NGlwVt2vZf--o4k726SNtCbQSPbmtFjRjPzDcBnqWgHNLbNnZSYS3ShGiDHnAsf0N9kJW1ITr68Uuc38uK2vN2C43UuDCLG4DOchMfoy29nbhmuyk4KOi6LkDS9TYZbytVaewzIzEjpJkVYwLUeYHwKVp9cXE-T16EiVZLzRydQLKkSAiLNgnjiUzGLv_bleNicvYbL1W-mGJOfk2VvJ-73EwTH_x3HG3g1aJ3ZaZomb2ELuz3YfYBFuAcvYiyoW-zD0TTCStArMtO1WYxSd312Z7_enX7PAnVGKjfO38HN2fTHt_N8qKeQO1GyPjdek7akPOeoHDPctqIVuuYtmUROaRTOV6jJgvGs9bQRCm6Q1B9PVgs6JlEcwE436_A9ZIXj2mihREuda1VZK0rJtXPWOK1KP4LJiseNG8DGQ82L-yYaHaxuSCihBKZqklBG8GXd4VfC2XiedD-wdEOWuDmC8SMhbto1mZSspH6HK6k2w0JdNCEvV5FaxEaQrVtphQW3ielwtiSSOtz0sEp_-PeHD-FlupcJUYEfYaefL_ETaSq9Hccp-getbOHC |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQg48GipWPogByQ4kK1jO3bSW1VtWUq3ElIrtafIdsYXUBZ1sxd-PWM7u6U8JG6RMs5jxvbMeGa-AXgrFe2Axra5kxJziS50A-SYc-ED-puspA3FybMLNb2SZ9fl9QZ8WNfCIGJMPsNxuIyx_HbuluGo7LAgdVmEoukHpPdLnqq11jEDcjRSwUkRlnCtByCfgtWHZ18mKe5QkTHJ-T0dFJuqhJRIsyCu-NTO4o-dOaqb02cwW31oyjL5Ol72dux-_Ibh-L9_8hyeDnZndpwmygvYwG4LnvyCRrgFD2M2qFtsw7tJBJagR2Sma7OYp-767MYe3Rx_zAJ1RkY33r6Eq9PJ5ck0Hzoq5E6UrM-N12QvKc85KscMt61oha55S06RUxqF8xVq8mE8az1thYIbJAPIk9-CjkkUO7DZzTt8BVnhuDZaKNHS4FpV1opScu2cNU6r0o9gvOJx4wa48dD14lsT3Q5WNySU0ARTNUkoI3i_HvA9IW38m3Q7sPSOLHFzBAf3hHh3X5NTyUoat7uSajMs1UUTKnMVGUZsBNn6Lq2xEDgxHc6XRFKHsx5W6dd_f_EbeDS9nJ03558uPu_C43RKE3IE92Czv13iPtktvT2I0_UnoTPlDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+compact+Yb%3AYAG+ring+laser&rft.jtitle=IEEE+journal+of+quantum+electronics&rft.au=Jui-Yun+Yi&rft.au=Li-Hsuan+Chen&rft.au=Sheng-Lung+Huang&rft.date=2006-08-01&rft.pub=IEEE&rft.issn=0018-9197&rft.volume=42&rft.issue=8&rft.spage=791&rft.epage=796&rft_id=info:doi/10.1109%2FJQE.2006.877222&rft.externalDocID=1658131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9197&client=summon |