Efficient and compact Yb:YAG ring laser

An efficient and compact Yb:YAG ring laser was demonstrated with a slope efficiency of 39.0% with respect to the absorbed power. The design issues for using Yb:YAG as the gain medium in the reentrant multipass ring laser are discussed. The high absorption coefficient and low quantum defect of Yb:YAG...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of quantum electronics Vol. 42; no. 8; pp. 791 - 796
Main Authors Yi, J.-Y., Chen, L.-H., Huang, S.-L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An efficient and compact Yb:YAG ring laser was demonstrated with a slope efficiency of 39.0% with respect to the absorbed power. The design issues for using Yb:YAG as the gain medium in the reentrant multipass ring laser are discussed. The high absorption coefficient and low quantum defect of Yb:YAG make it an ideal gain medium for the multipass ring cavity to fulfil reentrant condition and reduce reabsorption loss. The absorption characteristics of a 20-at.% doped Yb:YAG crystal and the optimum ratio of absorption depth to Yb:YAG thickness were measured. The degrees of linear polarization were 99.0% and 94.1% in planar N=2 and nonplanar (N,M)=(2,1) ring lasers, respectively. The multipass ring cavities can be applied in a compact mode-locked laser with long round-trip length
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2006.877222