Effects of nuclear deformation on the form factor for direct dark matter detection
For the detection of direct dark matter, in order to extract useful information about the funda- mental interactions from the data, it is crucial to properly determine the nuclear form factor. The form factor for the spin-independent cross section of collisions between dark matter particles and the...
Saved in:
Published in | Chinese physics C Vol. 36; no. 6; pp. 505 - 512 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1137 0254-3052 |
DOI | 10.1088/1674-1137/36/6/005 |
Cover
Loading…
Summary: | For the detection of direct dark matter, in order to extract useful information about the funda- mental interactions from the data, it is crucial to properly determine the nuclear form factor. The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors. When the analysis was carried out, the nuclei were always supposed to be spherically symmetric. In this work, we investigate the effects of the deformation of nuclei from a spherical shape to an ellipticM one on the form factor. Our results indicate that as long as the ellipticity is not too large, such deformation will not cause any substantial effects. In particular, when the nuclei are randomly orientated in room-temperature circumstances, one can completely neglect them. |
---|---|
Bibliography: | nuclear density, dark matter 11-5641/O4 CHEN Ya-Zheng CHEN Jun-Mou LUO Yan-An SHEN Hong LI Xue-Qian School of Physics, Nankai University, Tianjin 300071, China For the detection of direct dark matter, in order to extract useful information about the funda- mental interactions from the data, it is crucial to properly determine the nuclear form factor. The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors. When the analysis was carried out, the nuclei were always supposed to be spherically symmetric. In this work, we investigate the effects of the deformation of nuclei from a spherical shape to an ellipticM one on the form factor. Our results indicate that as long as the ellipticity is not too large, such deformation will not cause any substantial effects. In particular, when the nuclei are randomly orientated in room-temperature circumstances, one can completely neglect them. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/36/6/005 |