Design and development of the DE-SPECT system: a clinical SPECT system for broadband multi-isotope imaging of peripheral vascular disease

. Peripheral Vascular Disease (PVD) affects more than 230 million people worldwide and is one of the leading causes of disability among people over age 60. Nowadays, PVD remains largely underdiagnosed and undertreated, and requires the development of tailored diagnostic approaches. We present the fu...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 69; no. 12; pp. 125016 - 125032
Main Authors Zannoni, E M, Sankar, P, Jin, Y, Liu, C, Sinusas, A J, Metzler, S D, Meng, L J
Format Journal Article
LanguageEnglish
Published England IOP Publishing 11.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:. Peripheral Vascular Disease (PVD) affects more than 230 million people worldwide and is one of the leading causes of disability among people over age 60. Nowadays, PVD remains largely underdiagnosed and undertreated, and requires the development of tailored diagnostic approaches. We present the full design of the Dynamic Extremity SPECT (DE-SPECT) system, the first organ-dedicated SPECT system for lower extremity imaging, based on 1 cm thick Cadmium Zinc Telluride (CZT) spectrometers and a dynamic dual field-of-view (FOV) synthetic compound-eye (SCE) collimator. . The proposed DE-SPECT detection system consists of 48 1 cm thick 3D-position-sensitive CZT spectrometers arranged in a partial ring of 59 cm in diameter in a checkerboard pattern. The detection system is coupled with a compact dynamic SCE collimator that allows the user to select between two different FOVs at any time during an imaging study: a wide-FOV (28 cm diameter) configuration for dual-leg or scout imaging or a high-resolution and high-sensitivity (HR-HS) FOV (16 cm diameter) for single-leg or focused imaging. The preliminary experimental data show that the CZT spectrometer achieves a 3D intrinsic spatial resolution of <0.75 mm FWHM and an excellent energy resolution over a broad energy range (2.6 keV FWHM at 218, 3.3 keV at 440 keV). From simulations, the wide-FOV configuration offers a 0.034% averaged sensitivity at 140 keV and <8 mm spatial resolution, whereas the HR-HS configuration presents a peak central sensitivity of 0.07% at 140 keV and a ∼5 mm spatial resolution. The dynamic SCE collimator enables the capability to perform joint reconstructions that would ensure an overall improvement in imaging performance. . The DE-SPECT system is a stationary and high-performance SPECT system that offers an excellent spectroscopic performance with a unique computer-controlled dual-FOV imaging capability, and a relatively high sensitivity for multi-tracer and multi-functional SPECT imaging of the extremities.
Bibliography:PMB-115834.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/ad5266