Many-body physics with individually controlled Rydberg atoms

Recent decades have witnessed great developments in the field of quantum simulation—where synthetic systems are built and studied to gain insight into complicated, many-body real-world problems. Systems of individually controlled neutral atoms, interacting with each other when excited to Rydberg sta...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 16; no. 2; pp. 132 - 142
Main Authors Browaeys, Antoine, Lahaye, Thierry
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2020
Nature Publishing Group
Nature Publishing Group [2005-....]
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent decades have witnessed great developments in the field of quantum simulation—where synthetic systems are built and studied to gain insight into complicated, many-body real-world problems. Systems of individually controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for this task, particularly for the simulation of spin systems. Here, we review the techniques necessary for the manipulation of neutral atoms for the purpose of quantum simulation—such as quantum gas microscopes and arrays of optical tweezers—and explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models. We discuss recent achievements in the study of quantum many-body physics in this platform, and some current research directions beyond that. This Review Article outlines the techniques necessary for the manipulation of neutral atoms and making use of their interactions, when excited to Rydberg states, to achieve the goal of quantum simulation of many-body physics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-019-0733-z