Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification

Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 71; no. 4; pp. 1308 - 1318
Main Authors Jiang, Xue, Meng, Lubin, Wang, Ziwei, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject. Methods: This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction. Results: Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data. Significance: To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2023.3333327