An aggregation-induced emission-based ratiometric fluorescent chemosensor for Hg(II) and its application in Caenorhabditis elegans imaging

A chromone-based ratiometric fluorescent probe L2 was developed for the selective detection of Hg(II) in a semi-aqueous solution based on aggregation-induced emission (AIE) and chelation-enhanced fluorescence (CHEF) effect. The probe L2 fluoresced significantly at 498 nm in its aggregated state, and...

Full description

Saved in:
Bibliographic Details
Published inMethods (San Diego, Calif.) Vol. 221; pp. 1 - 11
Main Authors Ramki, K, Thiruppathi, G, Ramasamy, Selva Kumar, Sundararaj, P, Sakthivel, P
Format Journal Article
LanguageEnglish
Published United States 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A chromone-based ratiometric fluorescent probe L2 was developed for the selective detection of Hg(II) in a semi-aqueous solution based on aggregation-induced emission (AIE) and chelation-enhanced fluorescence (CHEF) effect. The probe L2 fluoresced significantly at 498 nm in its aggregated state, and when chelated with Hg(II), the soluble state fluoresced 1-fold higher. In addition, Job's plot reveals that the probe forms a 1:1 stoichiometry complex with Hg(II) with an association constant of 9.10 × 10 M estimated by the BH plot. The probe L2 detects Hg(II) down to 22.47 nM without interference from other interfering ions. The FTIR, ESI mass, and DFT-based computational studies investigated the binding mechanism of probe L2 with Hg(II). Taking advantage of its AIE characteristics, the probe L2 was successfully applied for bio-capability analysis in Caenorhabditis elegans (a nematode worm) imaging of Hg(II) in a living model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1046-2023
1095-9130
DOI:10.1016/j.ymeth.2023.11.010