Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3]HzSO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC-OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmo...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 8; pp. 60 - 64
Main Authors Zhou, Ying, Wang, Dao-Long, Wang, Chun-Lei, Jin, Xin-Xin, Qiu, Jie-Shan
Format Journal Article
LanguageEnglish
Published 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3]HzSO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC-OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC-OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC-SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC-OA are 1103 m2·g^-1 and 0.921 cm3·g^-1, respectively. At a current density of 0.1 A·g^-1, the specific capacitance of BNC-OA is 335 F·g^-1 and the capacitance retention can still reach 83% at 1 A·g^-1. The analysis shows that the superior electrochemical performance of the BNC-OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.
Bibliography:Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3]HzSO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC-OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC-OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC-SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC-OA are 1103 m2·g^-1 and 0.921 cm3·g^-1, respectively. At a current density of 0.1 A·g^-1, the specific capacitance of BNC-OA is 335 F·g^-1 and the capacitance retention can still reach 83% at 1 A·g^-1. The analysis shows that the superior electrochemical performance of the BNC-OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.
boron-nitrogen co-doped porous carbon, asphaltene, preparation, supercapacitors
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/8/086101