Supervised Contrastive Learning-Based Domain Generalization Network for Cross-Subject Motor Decoding

Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embrac...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 72; no. 1; pp. 401 - 412
Main Authors Zhi, Hongyi, Yu, Tianyou, Gu, Zhenghui, Lin, Zhuobin, Che, Le, Li, Yuanqing, Yu, Zhuliang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME.
AbstractList Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME.
Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME.Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME.
Author Che, Le
Yu, Tianyou
Lin, Zhuobin
Yu, Zhuliang
Zhi, Hongyi
Li, Yuanqing
Gu, Zhenghui
Author_xml – sequence: 1
  givenname: Hongyi
  orcidid: 0000-0001-9601-7787
  surname: Zhi
  fullname: Zhi, Hongyi
  organization: School of Automation Science and Engineering, South China University of Technology, China
– sequence: 2
  givenname: Tianyou
  orcidid: 0000-0002-1805-5339
  surname: Yu
  fullname: Yu, Tianyou
  organization: School of Automation Science and Engineering, South China University of Technology, China
– sequence: 3
  givenname: Zhenghui
  orcidid: 0000-0001-9365-2953
  surname: Gu
  fullname: Gu, Zhenghui
  organization: School of Automation Science and Engineering, South China University of Technology, China
– sequence: 4
  givenname: Zhuobin
  orcidid: 0009-0002-8165-7575
  surname: Lin
  fullname: Lin, Zhuobin
  organization: School of Automation Science and Engineering, South China University of Technology, China
– sequence: 5
  givenname: Le
  orcidid: 0009-0005-3597-7545
  surname: Che
  fullname: Che, Le
  email: 838583378@qq.com
  organization: School of Architecture, South China University of Technology, Guangzhou, China
– sequence: 6
  givenname: Yuanqing
  orcidid: 0000-0003-4288-5591
  surname: Li
  fullname: Li, Yuanqing
  organization: School of Automation Science and Engineering, South China University of Technology, China
– sequence: 7
  givenname: Zhuliang
  orcidid: 0000-0002-5502-8321
  surname: Yu
  fullname: Yu, Zhuliang
  email: zlyu@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39046861$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFD4CEUCQuXLKM_8RxjnRbCtIWDi1ny-tMkJesvdhOEXx6HHZBqAdO1nh-b-x574yc-OCRkOcUlpRC9-bu4uZqyYCJJRecdVw8IgvaNKpmDacnZAFAVd2xTpySs5S2pRRKyCfklHcgpJJ0QfrbaY_x3iXsq1XwOZqU3T1WazTRO_-lvjBz6zLsjPPVNXqMZnQ_TXbBVx8xfw_xazWEWK1iSKm-nTZbtLm6CbncXaINfRnylDwezJjw2fE8J5_fXd2t3tfrT9cfVm_XteUN5FoKw7lhdBAAyKkSA7Vq02DXd0IiqqaxtOWWcoAG2tZ0RmEnNz2wvhXWAj8nrw9z9zF8mzBlvXPJ4jgaj2FKmoMSrZSKyYK-eoBuwxR9-Z3ms4UguGCFenmkps0Oe72PbmfiD_3HvwLQA2Dn9SMOfxEKes5IzxnpOSN9zKho2gca6_JvQ4v7bvyv8sVB6RDxn5dk2Qs4_wXBQp1c
CODEN IEBEAX
CitedBy_id crossref_primary_10_3389_fnins_2025_1557287
Cites_doi 10.1088/1741-2552/abb7a7
10.5555/3524938.3525087
10.1109/TNNLS.2018.2789927
10.1109/TNNLS.2023.3243339
10.1609/aaai.v32i1.11596
10.1109/TNSRE.2019.2923315
10.1088/1741-2552/aab2f2
10.1007/978-3-319-49409-8_35
10.1109/TAFFC.2020.2994159
10.1109/TAFFC.2018.2885474
10.1109/MCI.2021.3061875
10.1093/gigascience/giz002
10.1109/TKDE.2022.3178128
10.1109/TNNLS.2021.3100583
10.1109/IJCNN.2008.4634130
10.1007/s00521-021-06352-5
10.1007/978-1-4899-7687-1_79
10.1109/TPAMI.2022.3195549
10.1109/86.895946
10.1109/TSMC.2021.3114145
10.1006/nimg.1997.0286
10.1109/TSMC.2015.2450680
10.1109/TAFFC.2022.3164516
10.1002/hbm.23730
10.1016/j.neunet.2022.06.008
10.1109/TPAMI.2012.69
10.1109/TNNLS.2020.3048385
10.1038/nrneurol.2016.113
10.1109/MCI.2015.2501545
10.1109/5.939829
10.1109/ICCV48922.2021.00948
10.1088/1741-2552/aace8c
10.1109/ACCESS.2020.2971600
10.1109/TNNLS.2022.3172108
10.1109/CVPR.2018.00566
10.1016/j.neunet.2023.03.039
10.1093/gigascience/gix034
10.1016/j.bspc.2020.102172
10.1161/01.CTR.101.23.e215
10.1088/1741-2560/3/3/003
10.1109/TBME.2019.2913914
10.1109/ICCV.2017.74
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2024.3432934
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 412
ExternalDocumentID 39046861
10_1109_TBME_2024_3432934
10608403
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: STI 2030-Major project
  grantid: 2022ZD0211700
– fundername: National Natural Science Foundation of China
  grantid: 62276102; 62376098
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c350t-64a33a21f400e3184f1c8b5e9d946ee855c173c13005077a9a8e96bd02d74cc03
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 06:06:16 EDT 2025
Mon Jun 30 13:16:44 EDT 2025
Mon Jul 21 05:57:41 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Tue Jul 01 03:28:41 EDT 2025
Wed Aug 27 01:55:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-64a33a21f400e3184f1c8b5e9d946ee855c173c13005077a9a8e96bd02d74cc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9601-7787
0000-0001-9365-2953
0009-0002-8165-7575
0000-0002-5502-8321
0000-0002-1805-5339
0000-0003-4288-5591
0009-0005-3597-7545
PMID 39046861
PQID 3155804342
PQPubID 85474
PageCount 12
ParticipantIDs ieee_primary_10608403
proquest_journals_3155804342
proquest_miscellaneous_3084766826
crossref_primary_10_1109_TBME_2024_3432934
pubmed_primary_39046861
crossref_citationtrail_10_1109_TBME_2024_3432934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Jan.
2025-1-00
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Schomer (ref2) 2012
ref50
ref46
ref45
ref42
ref41
ref43
Arpit (ref36) 2022
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Maaten (ref48) 2008; 9
ref40
Kingma (ref47) 2014
ref35
ref37
ref31
ref30
ref33
ref1
ref39
ref38
Ganin (ref21) 2016; 17
Verma (ref34) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
Khosla (ref32) 2020
Arjovsky (ref44) 2019
References_xml – volume: 17
  start-page: 1
  issue: 59
  year: 2016
  ident: ref21
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. learn. Res.
– ident: ref16
  doi: 10.1088/1741-2552/abb7a7
– start-page: 10530
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref34
  article-title: Towards domain-agnostic contrastive learning
– ident: ref35
  doi: 10.5555/3524938.3525087
– ident: ref11
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref25
  doi: 10.1109/TNNLS.2023.3243339
– ident: ref45
  doi: 10.1609/aaai.v32i1.11596
– ident: ref17
  doi: 10.1109/TNSRE.2019.2923315
– ident: ref5
  doi: 10.1088/1741-2552/aab2f2
– ident: ref28
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref23
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref22
  doi: 10.1109/TAFFC.2018.2885474
– volume: 9
  issue: 11
  year: 2008
  ident: ref48
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref14
  doi: 10.1109/MCI.2021.3061875
– ident: ref39
  doi: 10.1093/gigascience/giz002
– start-page: 18661
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref32
  article-title: Supervised contrastive learning
– ident: ref27
  doi: 10.1109/TKDE.2022.3178128
– start-page: 8265
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2022
  ident: ref36
  article-title: Ensemble of averages: Improving model selection and boosting performance in domain generalization
– ident: ref31
  doi: 10.1109/TNNLS.2021.3100583
– ident: ref7
  doi: 10.1109/IJCNN.2008.4634130
– ident: ref15
  doi: 10.1007/s00521-021-06352-5
– ident: ref42
  doi: 10.1007/978-1-4899-7687-1_79
– ident: ref20
  doi: 10.1109/TPAMI.2022.3195549
– year: 2019
  ident: ref44
  article-title: Invariant risk minimization
– ident: ref6
  doi: 10.1109/86.895946
– ident: ref24
  doi: 10.1109/TSMC.2021.3114145
– ident: ref50
  doi: 10.1006/nimg.1997.0286
– ident: ref3
  doi: 10.1109/TSMC.2015.2450680
– ident: ref30
  doi: 10.1109/TAFFC.2022.3164516
– ident: ref13
  doi: 10.1002/hbm.23730
– ident: ref18
  doi: 10.1016/j.neunet.2022.06.008
– ident: ref8
  doi: 10.1109/TPAMI.2012.69
– ident: ref12
  doi: 10.1109/TNNLS.2020.3048385
– ident: ref1
  doi: 10.1038/nrneurol.2016.113
– ident: ref19
  doi: 10.1109/MCI.2015.2501545
– ident: ref4
  doi: 10.1109/5.939829
– ident: ref33
  doi: 10.1109/ICCV48922.2021.00948
– ident: ref41
  doi: 10.1088/1741-2552/aace8c
– ident: ref46
  doi: 10.1109/ACCESS.2020.2971600
– ident: ref9
  doi: 10.1109/TNNLS.2022.3172108
– ident: ref43
  doi: 10.1109/CVPR.2018.00566
– volume-title: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
  year: 2012
  ident: ref2
– ident: ref26
  doi: 10.1016/j.neunet.2023.03.039
– ident: ref38
  doi: 10.1093/gigascience/gix034
– ident: ref10
  doi: 10.1016/j.bspc.2020.102172
– ident: ref40
  doi: 10.1161/01.CTR.101.23.e215
– year: 2014
  ident: ref47
  article-title: Adam: A method for stochastic optimization
– ident: ref37
  doi: 10.1088/1741-2560/3/3/003
– ident: ref29
  doi: 10.1109/TBME.2019.2913914
– ident: ref49
  doi: 10.1109/ICCV.2017.74
SSID ssj0014846
Score 2.4669755
Snippet Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 401
SubjectTerms Ablation
Adaptation
Adult
Algorithms
Alignment
Brain modeling
Brain-computer interface (BCI)
Contrastive learning
Decoding
domain generalization (DG)
EEG
Effectiveness
electroencephalogram (EEG)
Electroencephalography
Electroencephalography - methods
Feature extraction
Humans
Invariants
Learning
Male
Mental task performance
motor execution (ME)
motor imagery (MI)
Motor skill learning
Motors
Regularization
Representations
Signal Processing, Computer-Assisted
supervised contrastive learning (SCL)
Supervised Machine Learning
Training
Transfer learning
Title Supervised Contrastive Learning-Based Domain Generalization Network for Cross-Subject Motor Decoding
URI https://ieeexplore.ieee.org/document/10608403
https://www.ncbi.nlm.nih.gov/pubmed/39046861
https://www.proquest.com/docview/3155804342
https://www.proquest.com/docview/3084766826
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLfYDggOfIwBhYGCxAmpj6Rx0-bIvjQhvXdhk3ar0iQPIaCd9l4v--tnt3lPA2mIW6UkTVPbyc92bAN8LGPLaeqqfOlR52iIFtaXxMuoHWIoWhXZNDBfmLML_HpZXqZg9TEWJsY4Xj6LM34cffmh9wObykjCjSSFRO_ADmluU7DW1mWA9RSVIxVNV1hMLkwl7efzw_kJqYIFzjiM0mouxkO6Pn2ZUX-cR2OBlfux5njmnD6FxeZrp6smP2fDup35m78SOf73cp7Bk4Q-xZeJXZ7Dg9jtweM7OQn34OE8edtfQPg2XPFWsopBcBara7fizVGknKzf80PHTcf9b_ejEymBdYrrFIvpfrkgUCyOeOk57VFs9BHznvR8cUx6L5-b-3BxenJ-dJanqgy516Vc5wad1q5QS5J-NqDiUvm6LaMNFk2MdVl6VWnPbjLCmpWzro7WtEEWoULvpX4Ju13fxdcgItqgVQitdg69LBzBPYuo6bcEQpIqA7mhTeNTynKunPGrGVUXaRumbMOUbRJlM_i0HXI15ev4V-d9psqdjhNBMjjYcECTRHrVaEJetUSNRQYfts0kjOxhcV3sB-pDwytjSGXL4NXEOduXbxjuzT2TvoVHBdcWHs07B7C7vh7iOwI86_b9yOi3yK_2-Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIkE58FMKBAoECS5IWRLb-fGBA-222tJmL2yl3oJje1EFJFU3EYJ34VV4NmYSJypI5VaJW5Q4jmJ_Hn8z45kBeBnbktLUpcFSCx6IBOdC6hixLLgSwrAysmQayOfJ7Fi8P4lP1uDnGAtjre0On9kJXXa-fFPrlkxluMKTEBWSoVb1of3-DTW01duDKU7nK8b29xa7s8AVEQg0j8MmSITiXLFoiWAle59YRjorYyuNFIm1WRzrKOWavDpIjVIlVWZlUpqQmVRoHXLs9xpcR6IRsz48bHRSiKyPAwoj_EEmhXOaRqF8s9jJ91D5ZGJCgZuSU_kfLlEXzZLojx2wK-lyObvtdrn9O_BrGJ_-cMvnSduUE_3jr9SR_-0A3oXbjl_77_oFcQ_WbLUJty5kXdyEG7k7T3AfzIf2jITlyhqf8nSdqxWJf99lnf0U7Ch6NK2_qtPKdym6XeSqP-9P0PtI-_1dGuoApTCZtfy8bvDeFDV7YgZbcHwlf_wA1qu6so_At0IaHhlTcqWEDplCQiuF4DgNBrly5EE4YKHQLik71Qb5UnTKWSgLQlJBSCockjx4Pb5y1mck-VfjLULBhYY9ADzYHhBXOKG1KjhyyywUXDAPXoyPUdyQD0lVtm6xDb6eJgkqpR487JE6dj4A_PElH30ON2eL_Kg4OpgfPoENRpWUO2PWNqw35619ivSuKZ91i8yHj1cNyt8Cz1JW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Contrastive+Learning-Based+Domain+Generalization+Network+for+Cross-Subject+Motor+Decoding&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhi%2C+Hongyi&rft.au=Yu%2C+Tianyou&rft.au=Gu%2C+Zhenghui&rft.au=Lin%2C+Zhuobin&rft.date=2025-01-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=72&rft.issue=1&rft.spage=401&rft_id=info:doi/10.1109%2FTBME.2024.3432934&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon