Supervised Contrastive Learning-Based Domain Generalization Network for Cross-Subject Motor Decoding
Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embrac...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 72; no. 1; pp. 401 - 412 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME. |
---|---|
AbstractList | Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME. Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME.Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME. |
Author | Che, Le Yu, Tianyou Lin, Zhuobin Yu, Zhuliang Zhi, Hongyi Li, Yuanqing Gu, Zhenghui |
Author_xml | – sequence: 1 givenname: Hongyi orcidid: 0000-0001-9601-7787 surname: Zhi fullname: Zhi, Hongyi organization: School of Automation Science and Engineering, South China University of Technology, China – sequence: 2 givenname: Tianyou orcidid: 0000-0002-1805-5339 surname: Yu fullname: Yu, Tianyou organization: School of Automation Science and Engineering, South China University of Technology, China – sequence: 3 givenname: Zhenghui orcidid: 0000-0001-9365-2953 surname: Gu fullname: Gu, Zhenghui organization: School of Automation Science and Engineering, South China University of Technology, China – sequence: 4 givenname: Zhuobin orcidid: 0009-0002-8165-7575 surname: Lin fullname: Lin, Zhuobin organization: School of Automation Science and Engineering, South China University of Technology, China – sequence: 5 givenname: Le orcidid: 0009-0005-3597-7545 surname: Che fullname: Che, Le email: 838583378@qq.com organization: School of Architecture, South China University of Technology, Guangzhou, China – sequence: 6 givenname: Yuanqing orcidid: 0000-0003-4288-5591 surname: Li fullname: Li, Yuanqing organization: School of Automation Science and Engineering, South China University of Technology, China – sequence: 7 givenname: Zhuliang orcidid: 0000-0002-5502-8321 surname: Yu fullname: Yu, Zhuliang email: zlyu@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39046861$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFD4CEUCQuXLKM_8RxjnRbCtIWDi1ny-tMkJesvdhOEXx6HHZBqAdO1nh-b-x574yc-OCRkOcUlpRC9-bu4uZqyYCJJRecdVw8IgvaNKpmDacnZAFAVd2xTpySs5S2pRRKyCfklHcgpJJ0QfrbaY_x3iXsq1XwOZqU3T1WazTRO_-lvjBz6zLsjPPVNXqMZnQ_TXbBVx8xfw_xazWEWK1iSKm-nTZbtLm6CbncXaINfRnylDwezJjw2fE8J5_fXd2t3tfrT9cfVm_XteUN5FoKw7lhdBAAyKkSA7Vq02DXd0IiqqaxtOWWcoAG2tZ0RmEnNz2wvhXWAj8nrw9z9zF8mzBlvXPJ4jgaj2FKmoMSrZSKyYK-eoBuwxR9-Z3ms4UguGCFenmkps0Oe72PbmfiD_3HvwLQA2Dn9SMOfxEKes5IzxnpOSN9zKho2gca6_JvQ4v7bvyv8sVB6RDxn5dk2Qs4_wXBQp1c |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_3389_fnins_2025_1557287 |
Cites_doi | 10.1088/1741-2552/abb7a7 10.5555/3524938.3525087 10.1109/TNNLS.2018.2789927 10.1109/TNNLS.2023.3243339 10.1609/aaai.v32i1.11596 10.1109/TNSRE.2019.2923315 10.1088/1741-2552/aab2f2 10.1007/978-3-319-49409-8_35 10.1109/TAFFC.2020.2994159 10.1109/TAFFC.2018.2885474 10.1109/MCI.2021.3061875 10.1093/gigascience/giz002 10.1109/TKDE.2022.3178128 10.1109/TNNLS.2021.3100583 10.1109/IJCNN.2008.4634130 10.1007/s00521-021-06352-5 10.1007/978-1-4899-7687-1_79 10.1109/TPAMI.2022.3195549 10.1109/86.895946 10.1109/TSMC.2021.3114145 10.1006/nimg.1997.0286 10.1109/TSMC.2015.2450680 10.1109/TAFFC.2022.3164516 10.1002/hbm.23730 10.1016/j.neunet.2022.06.008 10.1109/TPAMI.2012.69 10.1109/TNNLS.2020.3048385 10.1038/nrneurol.2016.113 10.1109/MCI.2015.2501545 10.1109/5.939829 10.1109/ICCV48922.2021.00948 10.1088/1741-2552/aace8c 10.1109/ACCESS.2020.2971600 10.1109/TNNLS.2022.3172108 10.1109/CVPR.2018.00566 10.1016/j.neunet.2023.03.039 10.1093/gigascience/gix034 10.1016/j.bspc.2020.102172 10.1161/01.CTR.101.23.e215 10.1088/1741-2560/3/3/003 10.1109/TBME.2019.2913914 10.1109/ICCV.2017.74 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2024.3432934 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 412 |
ExternalDocumentID | 39046861 10_1109_TBME_2024_3432934 10608403 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: STI 2030-Major project grantid: 2022ZD0211700 – fundername: National Natural Science Foundation of China grantid: 62276102; 62376098 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c350t-64a33a21f400e3184f1c8b5e9d946ee855c173c13005077a9a8e96bd02d74cc03 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 06:06:16 EDT 2025 Mon Jun 30 13:16:44 EDT 2025 Mon Jul 21 05:57:41 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Tue Jul 01 03:28:41 EDT 2025 Wed Aug 27 01:55:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-64a33a21f400e3184f1c8b5e9d946ee855c173c13005077a9a8e96bd02d74cc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9601-7787 0000-0001-9365-2953 0009-0002-8165-7575 0000-0002-5502-8321 0000-0002-1805-5339 0000-0003-4288-5591 0009-0005-3597-7545 |
PMID | 39046861 |
PQID | 3155804342 |
PQPubID | 85474 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10608403 proquest_journals_3155804342 proquest_miscellaneous_3084766826 crossref_primary_10_1109_TBME_2024_3432934 pubmed_primary_39046861 crossref_citationtrail_10_1109_TBME_2024_3432934 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Jan. 2025-1-00 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Schomer (ref2) 2012 ref50 ref46 ref45 ref42 ref41 ref43 Arpit (ref36) 2022 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Maaten (ref48) 2008; 9 ref40 Kingma (ref47) 2014 ref35 ref37 ref31 ref30 ref33 ref1 ref39 ref38 Ganin (ref21) 2016; 17 Verma (ref34) 2021 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 Khosla (ref32) 2020 Arjovsky (ref44) 2019 |
References_xml | – volume: 17 start-page: 1 issue: 59 year: 2016 ident: ref21 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. learn. Res. – ident: ref16 doi: 10.1088/1741-2552/abb7a7 – start-page: 10530 volume-title: Proc. Int. Conf. Mach. Learn. year: 2021 ident: ref34 article-title: Towards domain-agnostic contrastive learning – ident: ref35 doi: 10.5555/3524938.3525087 – ident: ref11 doi: 10.1109/TNNLS.2018.2789927 – ident: ref25 doi: 10.1109/TNNLS.2023.3243339 – ident: ref45 doi: 10.1609/aaai.v32i1.11596 – ident: ref17 doi: 10.1109/TNSRE.2019.2923315 – ident: ref5 doi: 10.1088/1741-2552/aab2f2 – ident: ref28 doi: 10.1007/978-3-319-49409-8_35 – ident: ref23 doi: 10.1109/TAFFC.2020.2994159 – ident: ref22 doi: 10.1109/TAFFC.2018.2885474 – volume: 9 issue: 11 year: 2008 ident: ref48 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref14 doi: 10.1109/MCI.2021.3061875 – ident: ref39 doi: 10.1093/gigascience/giz002 – start-page: 18661 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref32 article-title: Supervised contrastive learning – ident: ref27 doi: 10.1109/TKDE.2022.3178128 – start-page: 8265 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2022 ident: ref36 article-title: Ensemble of averages: Improving model selection and boosting performance in domain generalization – ident: ref31 doi: 10.1109/TNNLS.2021.3100583 – ident: ref7 doi: 10.1109/IJCNN.2008.4634130 – ident: ref15 doi: 10.1007/s00521-021-06352-5 – ident: ref42 doi: 10.1007/978-1-4899-7687-1_79 – ident: ref20 doi: 10.1109/TPAMI.2022.3195549 – year: 2019 ident: ref44 article-title: Invariant risk minimization – ident: ref6 doi: 10.1109/86.895946 – ident: ref24 doi: 10.1109/TSMC.2021.3114145 – ident: ref50 doi: 10.1006/nimg.1997.0286 – ident: ref3 doi: 10.1109/TSMC.2015.2450680 – ident: ref30 doi: 10.1109/TAFFC.2022.3164516 – ident: ref13 doi: 10.1002/hbm.23730 – ident: ref18 doi: 10.1016/j.neunet.2022.06.008 – ident: ref8 doi: 10.1109/TPAMI.2012.69 – ident: ref12 doi: 10.1109/TNNLS.2020.3048385 – ident: ref1 doi: 10.1038/nrneurol.2016.113 – ident: ref19 doi: 10.1109/MCI.2015.2501545 – ident: ref4 doi: 10.1109/5.939829 – ident: ref33 doi: 10.1109/ICCV48922.2021.00948 – ident: ref41 doi: 10.1088/1741-2552/aace8c – ident: ref46 doi: 10.1109/ACCESS.2020.2971600 – ident: ref9 doi: 10.1109/TNNLS.2022.3172108 – ident: ref43 doi: 10.1109/CVPR.2018.00566 – volume-title: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields year: 2012 ident: ref2 – ident: ref26 doi: 10.1016/j.neunet.2023.03.039 – ident: ref38 doi: 10.1093/gigascience/gix034 – ident: ref10 doi: 10.1016/j.bspc.2020.102172 – ident: ref40 doi: 10.1161/01.CTR.101.23.e215 – year: 2014 ident: ref47 article-title: Adam: A method for stochastic optimization – ident: ref37 doi: 10.1088/1741-2560/3/3/003 – ident: ref29 doi: 10.1109/TBME.2019.2913914 – ident: ref49 doi: 10.1109/ICCV.2017.74 |
SSID | ssj0014846 |
Score | 2.4669755 |
Snippet | Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 401 |
SubjectTerms | Ablation Adaptation Adult Algorithms Alignment Brain modeling Brain-computer interface (BCI) Contrastive learning Decoding domain generalization (DG) EEG Effectiveness electroencephalogram (EEG) Electroencephalography Electroencephalography - methods Feature extraction Humans Invariants Learning Male Mental task performance motor execution (ME) motor imagery (MI) Motor skill learning Motors Regularization Representations Signal Processing, Computer-Assisted supervised contrastive learning (SCL) Supervised Machine Learning Training Transfer learning |
Title | Supervised Contrastive Learning-Based Domain Generalization Network for Cross-Subject Motor Decoding |
URI | https://ieeexplore.ieee.org/document/10608403 https://www.ncbi.nlm.nih.gov/pubmed/39046861 https://www.proquest.com/docview/3155804342 https://www.proquest.com/docview/3084766826 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLfYDggOfIwBhYGCxAmpj6Rx0-bIvjQhvXdhk3ar0iQPIaCd9l4v--tnt3lPA2mIW6UkTVPbyc92bAN8LGPLaeqqfOlR52iIFtaXxMuoHWIoWhXZNDBfmLML_HpZXqZg9TEWJsY4Xj6LM34cffmh9wObykjCjSSFRO_ADmluU7DW1mWA9RSVIxVNV1hMLkwl7efzw_kJqYIFzjiM0mouxkO6Pn2ZUX-cR2OBlfux5njmnD6FxeZrp6smP2fDup35m78SOf73cp7Bk4Q-xZeJXZ7Dg9jtweM7OQn34OE8edtfQPg2XPFWsopBcBara7fizVGknKzf80PHTcf9b_ejEymBdYrrFIvpfrkgUCyOeOk57VFs9BHznvR8cUx6L5-b-3BxenJ-dJanqgy516Vc5wad1q5QS5J-NqDiUvm6LaMNFk2MdVl6VWnPbjLCmpWzro7WtEEWoULvpX4Ju13fxdcgItqgVQitdg69LBzBPYuo6bcEQpIqA7mhTeNTynKunPGrGVUXaRumbMOUbRJlM_i0HXI15ev4V-d9psqdjhNBMjjYcECTRHrVaEJetUSNRQYfts0kjOxhcV3sB-pDwytjSGXL4NXEOduXbxjuzT2TvoVHBdcWHs07B7C7vh7iOwI86_b9yOi3yK_2-Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIkE58FMKBAoECS5IWRLb-fGBA-222tJmL2yl3oJje1EFJFU3EYJ34VV4NmYSJypI5VaJW5Q4jmJ_Hn8z45kBeBnbktLUpcFSCx6IBOdC6hixLLgSwrAysmQayOfJ7Fi8P4lP1uDnGAtjre0On9kJXXa-fFPrlkxluMKTEBWSoVb1of3-DTW01duDKU7nK8b29xa7s8AVEQg0j8MmSITiXLFoiWAle59YRjorYyuNFIm1WRzrKOWavDpIjVIlVWZlUpqQmVRoHXLs9xpcR6IRsz48bHRSiKyPAwoj_EEmhXOaRqF8s9jJ91D5ZGJCgZuSU_kfLlEXzZLojx2wK-lyObvtdrn9O_BrGJ_-cMvnSduUE_3jr9SR_-0A3oXbjl_77_oFcQ_WbLUJty5kXdyEG7k7T3AfzIf2jITlyhqf8nSdqxWJf99lnf0U7Ch6NK2_qtPKdym6XeSqP-9P0PtI-_1dGuoApTCZtfy8bvDeFDV7YgZbcHwlf_wA1qu6so_At0IaHhlTcqWEDplCQiuF4DgNBrly5EE4YKHQLik71Qb5UnTKWSgLQlJBSCockjx4Pb5y1mck-VfjLULBhYY9ADzYHhBXOKG1KjhyyywUXDAPXoyPUdyQD0lVtm6xDb6eJgkqpR487JE6dj4A_PElH30ON2eL_Kg4OpgfPoENRpWUO2PWNqw35619ivSuKZ91i8yHj1cNyt8Cz1JW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Contrastive+Learning-Based+Domain+Generalization+Network+for+Cross-Subject+Motor+Decoding&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhi%2C+Hongyi&rft.au=Yu%2C+Tianyou&rft.au=Gu%2C+Zhenghui&rft.au=Lin%2C+Zhuobin&rft.date=2025-01-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=72&rft.issue=1&rft.spage=401&rft_id=info:doi/10.1109%2FTBME.2024.3432934&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |