Supervised Contrastive Learning-Based Domain Generalization Network for Cross-Subject Motor Decoding

Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embrac...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 72; no. 1; pp. 401 - 412
Main Authors Zhi, Hongyi, Yu, Tianyou, Gu, Zhenghui, Lin, Zhuobin, Che, Le, Li, Yuanqing, Yu, Zhuliang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2024.3432934