Noise Reduction in Photoplethysmography Signals using a Convolutional Denoising Autoencoder with Unconventional Training Scheme
Objective : We propose an efficient approach based on a convolutional denoising autoencoder (CDA) network to reduce motion and noise artifacts (MNA) from corrupted atrial fibrillation (AF) and non-AF photoplethysmography (PPG) data segments so that an accurate PPG-signal-derived heart rate can be ob...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 71; no. 2; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective : We propose an efficient approach based on a convolutional denoising autoencoder (CDA) network to reduce motion and noise artifacts (MNA) from corrupted atrial fibrillation (AF) and non-AF photoplethysmography (PPG) data segments so that an accurate PPG-signal-derived heart rate can be obtained. Our method's main innovation is the optimization of the CDA performance for both rhythms using more AF than non-AF data for training the AF-specific CDA model and vice versa for the non-AF CDA network. Methods : To evaluate this unconventional training scheme, our proposed network was trained and tested on 25-sec PPG data segments from 48 subjects from two different databases-the Pulsewatch dataset and Stanford University's publicly available PPG dataset. In total, our dataset contains 10,773 data segments: 7,001 segments for training and 3,772 independent segments from out-of-sample subjects for testing. Results : Using real-life corrupted PPG segments, our approach significantly reduced the average heart rate root mean square error (RMSE) of the reconstructed PPG segments by 45.74% and 23% compared to the corrupted non-AF and AF data, respectively. Further, our approach exhibited lower RMSE, and higher sensitivity and PPV for detected peaks compared to the reconstructed data produced by the alternative methods. Conclusion : These results show the promise of our approach as a reliable denoising method, which should be used prior to AF detection algorithms for an accurate cardiac health monitoring involving wearable devices. Significance : PPG signals collected from wearables are vulnerable to MNA, which limits their use as a reliable measurement, particularly in uncontrolled real-life environments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2023.3307400 |