Intranasal delivery of pApoE2 via penetratin-mannose multi-functionalized chitosan polymeric micelles to the brain: Reduced total tau and phosphorylated tau burden in transgenic Alzheimer's mouse model

The phosphorylated tau accumulation is a classical pathological hallmark of future cognitive decline and a cause of neuronal death in Alzheimer's disease (AD). In this study, we developed multi-functionalized chitosan (CS) based polymeric micelles to effectively deliver pApoE2 via intranasal ad...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 310; no. Pt 4; p. 143542
Main Authors Gothwal, Avinash, Muolokwu, Chinenye Edith, Chaulagain, Bivek, Mahanta, Arun Kumar, Singh, Jagdish
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The phosphorylated tau accumulation is a classical pathological hallmark of future cognitive decline and a cause of neuronal death in Alzheimer's disease (AD). In this study, we developed multi-functionalized chitosan (CS) based polymeric micelles to effectively deliver pApoE2 via intranasal administration to the brain. The CS was modified with caproic acid (CA), cell-penetrating peptide penetratin (PEN), and GLUT-1 transporter ligand mannose (MAN) for selective and enhanced delivery to the brain. The multi-functionalized Cap-g-CS-PEN-MAN polymeric micelles were ≤200 nm in size, cationic in charge, and uniformly distributed (PDI ≤ 0.3). The multi-functionalized polymeric micelles did not exhibit toxicity against bEnd.3 cells and erythrocytes up to polymer concentrations of 500 μg/mL. The Cap-g-CS-PEN-MAN /pDNA polyplex was stable against a DNase rich environment. The Cap-g-CS-PEN-MAN/pAPoE2 polyplex demonstrated elevated expression of ApoE in primary astrocytes and neurons, 9.47 ± 2.13 and 5.67 ± 2.69 ng/mg of protein, respectively. The therapeutic efficacy of the Cap-g-CS-PEN-MAN/pApoE2 polyplex was analyzed against the PS19 tauopathy mice model. Total tau burden was significantly (p ≤ 0.05) reduced by 4.09 ± 1.4 ng/mg of protein in Cap-g-CS-PEN-MAN/pApoE2 polyplex administered mice over the other groups. Phosphorylated tau pT181 level was also significantly (p ≤ 0.05) reduced in Cap-g-CS-PEN-MAN/pApoE2 polyplex administered mice over saline, pApoE2 and Cap-g-CS/pApoE2 treated groups. •Multi-functionalized chitosan-based polymeric nanocarrier for effective gene delivery to the brain.•Exploring intranasal gene delivery to the brain and finding direct access through trigeminal and olfactory nerves.•pApoE2 gene therapy is a practical therapeutic approach to reduce tau anomaly in tauopathy mice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2025.143542