Mesoporous carbon nanofiber engineered for improved supercapacitor performance

Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-in...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 36; no. 2; pp. 312 - 320
Main Authors Ghosh, Subrata, Yong, Wan Dao, Jin, En Mei, Polaki, Shyamal Rao, Jeong, Sang Mun, Jun, Hangbae
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2019
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-018-0199-1

Cover

Abstract Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9 Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode.
AbstractList Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode KCI Citation Count: 36
Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9 Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode.
Author Ghosh, Subrata
Yong, Wan Dao
Jun, Hangbae
Jin, En Mei
Polaki, Shyamal Rao
Jeong, Sang Mun
Author_xml – sequence: 1
  givenname: Subrata
  surname: Ghosh
  fullname: Ghosh, Subrata
  organization: Department of Chemical Engineering, Chungbuk National University
– sequence: 2
  givenname: Wan Dao
  surname: Yong
  fullname: Yong, Wan Dao
  organization: Department of Chemical Engineering, Chungbuk National University
– sequence: 3
  givenname: En Mei
  surname: Jin
  fullname: Jin, En Mei
  email: kujie@naver.com
  organization: Department of Chemical Engineering, Chungbuk National University
– sequence: 4
  givenname: Shyamal Rao
  surname: Polaki
  fullname: Polaki, Shyamal Rao
  organization: Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute
– sequence: 5
  givenname: Sang Mun
  surname: Jeong
  fullname: Jeong, Sang Mun
  email: smjeong@chungbuk.ac.kr
  organization: Department of Chemical Engineering, Chungbuk National University
– sequence: 6
  givenname: Hangbae
  surname: Jun
  fullname: Jun, Hangbae
  organization: Department of Environmental Engineering, Chungbuk National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002433473$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kFtLAzEQhYNUsK3-AN8WfPJhNbO72SSPpXgpeAGpzyGbJiW9JGuyK_jvTV1BEPRhGCZzvuHkTNDIeacROgd8BRjT6wjAoMoxsFSc53CExsApyWlR4BEa44LUOQCQEzSJcYMxIXWBx-jpUUff-uD7mCkZGu8yJ503ttEh025tndZBrzLjQ2b3bfDvaYh9q4OSrVS2S-9pSOu9dEqfomMjd1Gfffcper29Wc7v84fnu8V89pCrkuAurwxXUJdGrhiv6po2EihIRmVZ8FqVymiiNCTPFSOmKVVVc0WbhumVkg3nrJyiy-GuC0ZslRVe2q--9mIbxOxluRAV5hxzkrQXgza5f-t17MTG98Ele6IAWrLkiBVJRQeVCj7GoI1In5Od9a4L0u4EYHEIWgxBixS0OAQtIJHwi2yD3cvw8S9TDExMWrfW4cfT39AnH6SSkQ
CitedBy_id crossref_primary_10_1039_D0TA05100D
crossref_primary_10_1007_s11814_024_00018_3
crossref_primary_10_1063_5_0177740
crossref_primary_10_1021_acsanm_1c01056
crossref_primary_10_1016_j_jiec_2021_04_034
crossref_primary_10_1016_j_mset_2022_10_004
crossref_primary_10_1002_smll_202005414
crossref_primary_10_1002_smtd_202200049
crossref_primary_10_1002_pat_5015
crossref_primary_10_1088_1361_6528_abd8f8
crossref_primary_10_1016_j_jelechem_2020_114564
crossref_primary_10_1039_D0NR03425H
crossref_primary_10_1016_j_electacta_2023_142921
crossref_primary_10_1016_j_carbpol_2024_122955
crossref_primary_10_1007_s11814_020_0729_5
crossref_primary_10_1016_j_diamond_2023_109803
crossref_primary_10_1515_epoly_2020_0068
crossref_primary_10_1002_ente_202000918
crossref_primary_10_1016_j_jiec_2019_08_026
crossref_primary_10_1002_er_8715
crossref_primary_10_1016_j_desal_2024_117857
crossref_primary_10_3390_polym12122884
crossref_primary_10_1007_s40820_019_0337_2
crossref_primary_10_1016_j_micromeso_2020_110121
crossref_primary_10_33961_jecst_2020_00892
crossref_primary_10_1007_s10854_020_04241_6
crossref_primary_10_1016_j_cej_2021_130805
crossref_primary_10_1002_er_6896
crossref_primary_10_1016_j_nanoso_2024_101137
crossref_primary_10_1039_D1TA01802G
crossref_primary_10_1016_j_jpowsour_2024_234882
crossref_primary_10_1007_s11814_021_1055_2
crossref_primary_10_1039_C9RA07157A
crossref_primary_10_3390_ma14040948
crossref_primary_10_1155_er_9740805
crossref_primary_10_1016_j_apsusc_2020_148354
crossref_primary_10_1016_j_nanoen_2020_105667
crossref_primary_10_1002_est2_70061
crossref_primary_10_3390_molecules26030724
crossref_primary_10_33961_jecst_2022_00619
crossref_primary_10_1016_j_est_2022_105698
crossref_primary_10_1007_s11814_021_1041_8
crossref_primary_10_1016_j_est_2025_115381
crossref_primary_10_2166_ws_2023_334
crossref_primary_10_1016_j_electacta_2019_07_043
crossref_primary_10_1088_1361_6528_abf87b
crossref_primary_10_4028_www_scientific_net_AEF_40_25
crossref_primary_10_1007_s42765_024_00379_8
crossref_primary_10_1021_acsaem_2c00417
crossref_primary_10_1039_D4TA03192J
crossref_primary_10_1016_j_est_2019_100962
Cites_doi 10.1149/2.0381501jes
10.1016/j.carbon.2015.12.068
10.1063/1.1599963
10.1016/j.jtice.2018.01.003
10.1016/j.carbon.2015.12.078
10.1007/s11814-018-0089-6
10.1016/j.apsusc.2015.05.038
10.1016/j.jpowsour.2016.05.070
10.1016/j.electacta.2014.07.047
10.1039/c3ta11667k
10.1039/c0ee00074d
10.1016/j.jiec.2013.12.037
10.1039/C7TA00863E
10.1063/1.5002748
10.1149/2.0181811jes
10.1088/1361-6528/aaa7e3
10.1039/C7TA10013B
10.1016/j.jpowsour.2010.06.036
10.1007/s12648-017-1113-0
10.1088/0957-4484/23/1/015301
10.1016/j.nanoso.2017.03.008
10.1016/j.ensm.2018.05.011
10.1088/1361-6463/aab130
10.1016/j.mattod.2018.01.035
10.1016/j.cej.2016.10.012
10.1007/s11814-017-0205-z
10.1002/app.45723
10.1557/adv.2018.139
10.1149/1.1801631
10.1039/c3ra47681b
10.1039/C6QM00169F
10.1016/j.jpowsour.2014.10.126
10.1016/j.cej.2017.07.063
10.2174/1385272811317130006
10.1016/j.nanoen.2016.08.043
10.5012/bkcs.2008.29.4.777
10.1016/j.jpowsour.2013.06.060
10.1016/j.jpowsour.2018.08.071
10.1016/j.jiec.2017.06.022
10.1002/adma.201104940
10.1016/j.carbon.2016.06.067
10.1007/978-1-4757-3058-6
10.1016/j.nanoen.2015.04.007
10.1016/j.matlet.2017.04.086
10.1021/acsami.5b06107
ContentType Journal Article
Copyright Korean Institute of Chemical Engineers, Seoul, Korea 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Korean Institute of Chemical Engineers, Seoul, Korea 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-018-0199-1
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 320
ExternalDocumentID oai_kci_go_kr_ARTI_4099095
10_1007_s11814_018_0199_1
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c350t-4f9c163fad894667ba171a87a3296c3cfe5ce1025485fb3c469c7bb8edcab9983
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:39 EST 2024
Fri Jul 25 11:09:40 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Tue Jul 01 03:29:37 EDT 2025
Fri Feb 21 02:35:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Supercapacitor
Electrospinning
Specific Capacitance
Tandem Cell
Porous Carbon Nanofiber
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-4f9c163fad894667ba171a87a3296c3cfe5ce1025485fb3c469c7bb8edcab9983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2173835082
PQPubID 2044390
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_4099095
proquest_journals_2173835082
crossref_citationtrail_10_1007_s11814_018_0199_1
crossref_primary_10_1007_s11814_018_0199_1
springer_journals_10_1007_s11814_018_0199_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References FanL.YangL.NiX.HanJ.GuoR.ZhangC.Carbon201610762910.1016/j.carbon.2016.06.0671:CAS:528:DC%2BC28XhtVGmtbjF
EftekhariA.J. Mater. Chem. A20186286610.1039/C7TA10013B1:CAS:528:DC%2BC1cXjt1KqtA%3D%3D
KimC.YangK.Appl. Phys. Lett.200383121610.1063/1.15999631:CAS:528:DC%2BD3sXmtFOksLo%3D
SankarK.V.SelvanR.K.RSC Adv.201441755510.1039/c3ra47681b1:CAS:528:DC%2BC2cXmtlSlsbc%3D
MaoX.HattonT.A.RutledgeG.C.Curr. Org. Chem.201317139010.2174/13852728113171300061:CAS:528:DC%2BC3sXht1WrtLnO
InagakiM.KonnoH.TanaikeO.J. Power Sources2010195788010.1016/j.jpowsour.2010.06.0361:CAS:528:DC%2BC3cXhtFWnsr3M
KimC. H.KimB.-H.J. Power Sources201527451210.1016/j.jpowsour.2014.10.1261:CAS:528:DC%2BC2cXhvVWmurrO
KimC.YangK.-S.LeeW.-J.Electrochem. Solid-State Lett.20047A39710.1149/1.18016311:CAS:528:DC%2BD2cXptFegsr4%3D
GhoshS.SahooG.PolakiS.R.KrishnaN. G.KamruddinM.MathewsT.J. Appl. Phys.201712221490210.1063/1.50027481:CAS:528:DC%2BC2sXhvFeku7bF
KimB.-H.YangK. S.J. Ind. Eng. Chem.201420347410.1016/j.jiec.2013.12.0371:CAS:528:DC%2BC2cXitVemtbY%3D
StollerM.D.RuoffR. S.Energy Environ. Sci.20103129410.1039/c0ee00074d1:CAS:528:DC%2BC3cXht1yrsbnM
DingR.WuH.ThungaM.BowlerN.KesslerM.R.Carbon201610012610.1016/j.carbon.2015.12.0781:CAS:528:DC%2BC28XmtFCmug%3D%3D
WangJ.TangJ.XuY.DingB.ChangZ.WangY.HaoX.DouH.KimJ. H.ZhangX.YamauchiY.Nano Energy20162823210.1016/j.nanoen.2016.08.0431:CAS:528:DC%2BC28XhsVKqsLjJ
CaiJ.NiuH.WangH.ShaoH.FangJ.HeJ.XiongH.MaC.LinT.J. Power Sources201632430210.1016/j.jpowsour.2016.05.0701:CAS:528:DC%2BC28XoslShsrY%3D
KimM.KimY.LeeK.M.JeongS.Y.LeeE.BaeckS.H.ShimS. E.Carbon20169960710.1016/j.carbon.2015.12.0681:CAS:528:DC%2BC28XhsFaksQ%3D%3D
HongS.LeeS.PaikU.Electrochim. Acta20141413910.1016/j.electacta.2014.07.0471:CAS:528:DC%2BC2cXhtlWls7rJ
GhoshS.JeongS. M.PolakiS.R.Korean J. Chem. Eng.201835138910.1007/s11814-018-0089-61:CAS:528:DC%2BC1cXht1CjtrjL
JeongJ. H.KimB.-H.J. Taiwan Inst. Chem. Eng.20188417910.1016/j.jtice.2018.01.0031:CAS:528:DC%2BC1cXlt12qsw%3D%3D
SchütterC.Ramirez-CastroC.OljacaM.PasseriniS.WinterM.BalducciA.J. Electrochem. Soc.2015162A4410.1149/2.0381501jes1:CAS:528:DC%2BC2cXitVCrsr3F
ConwayB. E.Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications199910.1007/978-1-4757-3058-6
KimY.-S.KumarK.FisherF.T.YangE.-H.Nanotechnology20122301530110.1088/0957-4484/23/1/0153011:CAS:528:DC%2BC38Xht12lu7s%3D22155846
XiaL.YuL.HuD.ChenG.Z.Mater. Chem. Front.2017158410.1039/C6QM00169F1:CAS:528:DC%2BC2sXhs1els7nO
LinZ.GoikoleaE.BalducciA.NaoiK.TabernaP. L.SalanneM.YushinG.SimonP.Mater. Today20182141910.1016/j.mattod.2018.01.0351:CAS:528:DC%2BC1cXisFKrtLw%3D
GhoshS.MathewsT.GuptaB.DasA.KrishnaN.G.KamruddinM.Nano-Struct. Nano-Objects2017104210.1016/j.nanoso.2017.03.0081:CAS:528:DC%2BC2sXhtVWrsbfE
SahooG.PolakiS.R.GhoshS.KrishnaN. G.KamruddinM.OstrikovK.Energy Storage Mater.20181429710.1016/j.ensm.2018.05.011
ZhouD.-D.LiW.-Y.DongX.-L.WangY.-G.WangC.-X.XiaY.-Y.J. Mater. Chem. A20131848810.1039/c3ta11667k1:CAS:528:DC%2BC3sXhtVCqurvI
ParkS.-J.ImS.-H.Bull. Korean Chem. Soc.20082977710.5012/bkcs.2008.29.4.7771:CAS:528:DC%2BD1cXmtlaqsbo%3D
JinE. M.LimJ. G.JeongS. M.J. Ind. Eng. Chem.20175442110.1016/j.jiec.2017.06.0221:CAS:528:DC%2BC2sXhtVGktb7E
ChengY.HuangL.XiaoX.YaoB.YuanL.LiT.HuZ.WangB.WanJ.ZhouJ.Nano Energy2015156610.1016/j.nanoen.2015.04.0071:CAS:528:DC%2BC2MXnsFygsLo%3D
CakiciM.KakarlaR.R.Alonso-MarroquinF.Chem. Eng. J.201730915110.1016/j.cej.2016.10.0121:CAS:528:DC%2BC28XhslWju7%2FE
ChoudhuryA.DeyB.MahapatraS.S.KimD.-W.YangK.-S.YangD. J.Nanotechnology20182916540110.1088/1361-6528/aaa7e31:CAS:528:DC%2BC1cXitFyjt77O29334481
GhoshS.GanesanK.PolakiS.MathewsT.DharaS.KamruddinM.TyagiA.Appl. Surf. Sci.201534957610.1016/j.apsusc.2015.05.0381:CAS:528:DC%2BC2MXosFKmsL4%3D
GhoshS.PolakiS.R.KamruddinM.JeongS. M.OstrikovK.K.J. Phys. D: Appl. Phys.20185114530310.1088/1361-6463/aab1301:CAS:528:DC%2BC1cXhslWlsLzN
BorensteinA.HannaO.AttiasR.LuskiS.BrousseT.AurbachD.J. Mater. Chem. A201751265310.1039/C7TA00863E1:CAS:528:DC%2BC2sXnslKnsLk%3D
LeeW.-J.JeongS.LeeH.KimB.-J.AnK.-H.ParkY.-K.JungS.-C.Korean J. Chem. Eng.201734299310.1007/s11814-017-0205-z1:CAS:528:DC%2BC2sXhsVejtbjJ
MichioI.YingY.FeiyuK.Adv. Mater.201224254710.1002/adma.2011049401:CAS:528:DC%2BC38Xls1eit78%3D
CheeW.K.LimH. N.ZainalZ.HarrisonI.AndouY.HuangN. M.AltarawnehM.JiangZ.T.Mater. Lett.201719920010.1016/j.matlet.2017.04.0861:CAS:528:DC%2BC2sXmsl2nu7c%3D
GhoshS.PolakiS.R.AjikumarP.KrishnaN.G.KamruddinM.Indian J. Phys.20189233710.1007/s12648-017-1113-01:CAS:528:DC%2BC2sXhslSkurrE
LiuY.ZhouJ.ChenL.ZhangP.FuW.ZhaoH.MaY.PanX.ZhangZ.HanW.XieE.ACS Appl. Mater. Interfaces201572351510.1021/acsami.5b061071:CAS:528:DC%2BC2MXhs1ejs7vM26449440
IsmarE.KarazehirT.AtesM.SaracA. S.J. Appl. Polym. Sci.20181354572310.1002/app.457231:CAS:528:DC%2BC2sXhsVKqsbfM
IslamN.Ferdous HoqueM.N.ZuY.WangS.FanZ.MRS Adv.2018385510.1557/adv.2018.1391:CAS:528:DC%2BC1cXns12msb4%3D
ChodankarN.R.JiS.-H.KimD.-H.J. Electrochem. Soc.2018165A244610.1149/2.0181811jes1:CAS:528:DC%2BC1cXitVOltbfE
SamuelE.JoshiB.JoH. S.KimY. I.AnS.SwihartM.T.YunJ. M.KimK. H.YoonS. S.Chem. Eng. J.201732877610.1016/j.cej.2017.07.0631:CAS:528:DC%2BC2sXht1aktrzO
DongQ.WangG.HuH.YangJ.QianB.LingZ.QiuJ.J. Power Sources201324335010.1016/j.jpowsour.2013.06.0601:CAS:528:DC%2BC3sXht12hsrjN
SahooG.PolakiS.R.GhoshS.KrishnaN.G.KamruddinM.J. Power Sources20184013710.1016/j.jpowsour.2018.08.0711:CAS:528:DC%2BC1cXhs1altbjE
W.-J. Lee (199_CR20) 2017; 34
S. Ghosh (199_CR6) 2018; 35
N.R. Chodankar (199_CR11) 2018; 165
S. Ghosh (199_CR31) 2017; 10
A. Borenstein (199_CR3) 2017; 5
C. H. Kim (199_CR18) 2015; 274
Y. Cheng (199_CR40) 2015; 15
L. Xia (199_CR4) 2017; 1
Z. Lin (199_CR1) 2018; 21
M.D. Stoller (199_CR33) 2010; 3
A. Choudhury (199_CR14) 2018; 29
S.-J. Park (199_CR24) 2008; 29
S. Hong (199_CR42) 2014; 141
S. Ghosh (199_CR9) 2018; 92
X. Mao (199_CR13) 2013; 17
A. Eftekhari (199_CR43) 2018; 6
L. Fan (199_CR30) 2016; 107
D.-D. Zhou (199_CR23) 2013; 1
M. Kim (199_CR27) 2016; 99
J. Cai (199_CR44) 2016; 324
C. Schütter (199_CR10) 2015; 162
I. Michio (199_CR21) 2012; 24
S. Ghosh (199_CR35) 2015; 349
G. Sahoo (199_CR8) 2018; 401
B.-H. Kim (199_CR38) 2014; 20
Q. Dong (199_CR41) 2013; 243
E. M. Jin (199_CR7) 2017; 54
R. Ding (199_CR34) 2016; 100
E. Ismar (199_CR32) 2018; 135
M. Inagaki (199_CR5) 2010; 195
N. Islam (199_CR15) 2018; 3
Y. Liu (199_CR25) 2015; 7
C. Kim (199_CR16) 2004; 7
M. Cakici (199_CR19) 2017; 309
S. Ghosh (199_CR37) 2018; 51
E. Samuel (199_CR17) 2017; 328
K.V. Sankar (199_CR45) 2014; 4
W.K. Chee (199_CR39) 2017; 199
Y.-S. Kim (199_CR29) 2012; 23
J. Wang (199_CR26) 2016; 28
S. Ghosh (199_CR12) 2017; 122
B. E. Conway (199_CR2) 1999
C. Kim (199_CR22) 2003; 83
J. H. Jeong (199_CR28) 2018; 84
G. Sahoo (199_CR36) 2018; 14
References_xml – reference: FanL.YangL.NiX.HanJ.GuoR.ZhangC.Carbon201610762910.1016/j.carbon.2016.06.0671:CAS:528:DC%2BC28XhtVGmtbjF
– reference: SchütterC.Ramirez-CastroC.OljacaM.PasseriniS.WinterM.BalducciA.J. Electrochem. Soc.2015162A4410.1149/2.0381501jes1:CAS:528:DC%2BC2cXitVCrsr3F
– reference: HongS.LeeS.PaikU.Electrochim. Acta20141413910.1016/j.electacta.2014.07.0471:CAS:528:DC%2BC2cXhtlWls7rJ
– reference: SankarK.V.SelvanR.K.RSC Adv.201441755510.1039/c3ra47681b1:CAS:528:DC%2BC2cXmtlSlsbc%3D
– reference: MaoX.HattonT.A.RutledgeG.C.Curr. Org. Chem.201317139010.2174/13852728113171300061:CAS:528:DC%2BC3sXht1WrtLnO
– reference: GhoshS.GanesanK.PolakiS.MathewsT.DharaS.KamruddinM.TyagiA.Appl. Surf. Sci.201534957610.1016/j.apsusc.2015.05.0381:CAS:528:DC%2BC2MXosFKmsL4%3D
– reference: ChodankarN.R.JiS.-H.KimD.-H.J. Electrochem. Soc.2018165A244610.1149/2.0181811jes1:CAS:528:DC%2BC1cXitVOltbfE
– reference: MichioI.YingY.FeiyuK.Adv. Mater.201224254710.1002/adma.2011049401:CAS:528:DC%2BC38Xls1eit78%3D
– reference: CaiJ.NiuH.WangH.ShaoH.FangJ.HeJ.XiongH.MaC.LinT.J. Power Sources201632430210.1016/j.jpowsour.2016.05.0701:CAS:528:DC%2BC28XoslShsrY%3D
– reference: KimC. H.KimB.-H.J. Power Sources201527451210.1016/j.jpowsour.2014.10.1261:CAS:528:DC%2BC2cXhvVWmurrO
– reference: GhoshS.MathewsT.GuptaB.DasA.KrishnaN.G.KamruddinM.Nano-Struct. Nano-Objects2017104210.1016/j.nanoso.2017.03.0081:CAS:528:DC%2BC2sXhtVWrsbfE
– reference: GhoshS.PolakiS.R.KamruddinM.JeongS. M.OstrikovK.K.J. Phys. D: Appl. Phys.20185114530310.1088/1361-6463/aab1301:CAS:528:DC%2BC1cXhslWlsLzN
– reference: ZhouD.-D.LiW.-Y.DongX.-L.WangY.-G.WangC.-X.XiaY.-Y.J. Mater. Chem. A20131848810.1039/c3ta11667k1:CAS:528:DC%2BC3sXhtVCqurvI
– reference: KimY.-S.KumarK.FisherF.T.YangE.-H.Nanotechnology20122301530110.1088/0957-4484/23/1/0153011:CAS:528:DC%2BC38Xht12lu7s%3D22155846
– reference: LeeW.-J.JeongS.LeeH.KimB.-J.AnK.-H.ParkY.-K.JungS.-C.Korean J. Chem. Eng.201734299310.1007/s11814-017-0205-z1:CAS:528:DC%2BC2sXhsVejtbjJ
– reference: WangJ.TangJ.XuY.DingB.ChangZ.WangY.HaoX.DouH.KimJ. H.ZhangX.YamauchiY.Nano Energy20162823210.1016/j.nanoen.2016.08.0431:CAS:528:DC%2BC28XhsVKqsLjJ
– reference: GhoshS.PolakiS.R.AjikumarP.KrishnaN.G.KamruddinM.Indian J. Phys.20189233710.1007/s12648-017-1113-01:CAS:528:DC%2BC2sXhslSkurrE
– reference: InagakiM.KonnoH.TanaikeO.J. Power Sources2010195788010.1016/j.jpowsour.2010.06.0361:CAS:528:DC%2BC3cXhtFWnsr3M
– reference: SahooG.PolakiS.R.GhoshS.KrishnaN.G.KamruddinM.J. Power Sources20184013710.1016/j.jpowsour.2018.08.0711:CAS:528:DC%2BC1cXhs1altbjE
– reference: KimC.YangK.-S.LeeW.-J.Electrochem. Solid-State Lett.20047A39710.1149/1.18016311:CAS:528:DC%2BD2cXptFegsr4%3D
– reference: StollerM.D.RuoffR. S.Energy Environ. Sci.20103129410.1039/c0ee00074d1:CAS:528:DC%2BC3cXht1yrsbnM
– reference: ChoudhuryA.DeyB.MahapatraS.S.KimD.-W.YangK.-S.YangD. J.Nanotechnology20182916540110.1088/1361-6528/aaa7e31:CAS:528:DC%2BC1cXitFyjt77O29334481
– reference: CheeW.K.LimH. N.ZainalZ.HarrisonI.AndouY.HuangN. M.AltarawnehM.JiangZ.T.Mater. Lett.201719920010.1016/j.matlet.2017.04.0861:CAS:528:DC%2BC2sXmsl2nu7c%3D
– reference: IslamN.Ferdous HoqueM.N.ZuY.WangS.FanZ.MRS Adv.2018385510.1557/adv.2018.1391:CAS:528:DC%2BC1cXns12msb4%3D
– reference: JeongJ. H.KimB.-H.J. Taiwan Inst. Chem. Eng.20188417910.1016/j.jtice.2018.01.0031:CAS:528:DC%2BC1cXlt12qsw%3D%3D
– reference: KimB.-H.YangK. S.J. Ind. Eng. Chem.201420347410.1016/j.jiec.2013.12.0371:CAS:528:DC%2BC2cXitVemtbY%3D
– reference: KimM.KimY.LeeK.M.JeongS.Y.LeeE.BaeckS.H.ShimS. E.Carbon20169960710.1016/j.carbon.2015.12.0681:CAS:528:DC%2BC28XhsFaksQ%3D%3D
– reference: ConwayB. E.Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications199910.1007/978-1-4757-3058-6
– reference: DingR.WuH.ThungaM.BowlerN.KesslerM.R.Carbon201610012610.1016/j.carbon.2015.12.0781:CAS:528:DC%2BC28XmtFCmug%3D%3D
– reference: XiaL.YuL.HuD.ChenG.Z.Mater. Chem. Front.2017158410.1039/C6QM00169F1:CAS:528:DC%2BC2sXhs1els7nO
– reference: GhoshS.SahooG.PolakiS.R.KrishnaN. G.KamruddinM.MathewsT.J. Appl. Phys.201712221490210.1063/1.50027481:CAS:528:DC%2BC2sXhvFeku7bF
– reference: ParkS.-J.ImS.-H.Bull. Korean Chem. Soc.20082977710.5012/bkcs.2008.29.4.7771:CAS:528:DC%2BD1cXmtlaqsbo%3D
– reference: BorensteinA.HannaO.AttiasR.LuskiS.BrousseT.AurbachD.J. Mater. Chem. A201751265310.1039/C7TA00863E1:CAS:528:DC%2BC2sXnslKnsLk%3D
– reference: SahooG.PolakiS.R.GhoshS.KrishnaN. G.KamruddinM.OstrikovK.Energy Storage Mater.20181429710.1016/j.ensm.2018.05.011
– reference: LinZ.GoikoleaE.BalducciA.NaoiK.TabernaP. L.SalanneM.YushinG.SimonP.Mater. Today20182141910.1016/j.mattod.2018.01.0351:CAS:528:DC%2BC1cXisFKrtLw%3D
– reference: LiuY.ZhouJ.ChenL.ZhangP.FuW.ZhaoH.MaY.PanX.ZhangZ.HanW.XieE.ACS Appl. Mater. Interfaces201572351510.1021/acsami.5b061071:CAS:528:DC%2BC2MXhs1ejs7vM26449440
– reference: SamuelE.JoshiB.JoH. S.KimY. I.AnS.SwihartM.T.YunJ. M.KimK. H.YoonS. S.Chem. Eng. J.201732877610.1016/j.cej.2017.07.0631:CAS:528:DC%2BC2sXht1aktrzO
– reference: EftekhariA.J. Mater. Chem. A20186286610.1039/C7TA10013B1:CAS:528:DC%2BC1cXjt1KqtA%3D%3D
– reference: GhoshS.JeongS. M.PolakiS.R.Korean J. Chem. Eng.201835138910.1007/s11814-018-0089-61:CAS:528:DC%2BC1cXht1CjtrjL
– reference: KimC.YangK.Appl. Phys. Lett.200383121610.1063/1.15999631:CAS:528:DC%2BD3sXmtFOksLo%3D
– reference: JinE. M.LimJ. G.JeongS. M.J. Ind. Eng. Chem.20175442110.1016/j.jiec.2017.06.0221:CAS:528:DC%2BC2sXhtVGktb7E
– reference: CakiciM.KakarlaR.R.Alonso-MarroquinF.Chem. Eng. J.201730915110.1016/j.cej.2016.10.0121:CAS:528:DC%2BC28XhslWju7%2FE
– reference: ChengY.HuangL.XiaoX.YaoB.YuanL.LiT.HuZ.WangB.WanJ.ZhouJ.Nano Energy2015156610.1016/j.nanoen.2015.04.0071:CAS:528:DC%2BC2MXnsFygsLo%3D
– reference: IsmarE.KarazehirT.AtesM.SaracA. S.J. Appl. Polym. Sci.20181354572310.1002/app.457231:CAS:528:DC%2BC2sXhsVKqsbfM
– reference: DongQ.WangG.HuH.YangJ.QianB.LingZ.QiuJ.J. Power Sources201324335010.1016/j.jpowsour.2013.06.0601:CAS:528:DC%2BC3sXht12hsrjN
– volume: 162
  start-page: A44
  year: 2015
  ident: 199_CR10
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0381501jes
– volume: 99
  start-page: 607
  year: 2016
  ident: 199_CR27
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.068
– volume: 83
  start-page: 1216
  year: 2003
  ident: 199_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1599963
– volume: 84
  start-page: 179
  year: 2018
  ident: 199_CR28
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.01.003
– volume: 100
  start-page: 126
  year: 2016
  ident: 199_CR34
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.078
– volume: 35
  start-page: 1389
  year: 2018
  ident: 199_CR6
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-018-0089-6
– volume: 349
  start-page: 576
  year: 2015
  ident: 199_CR35
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.038
– volume: 324
  start-page: 302
  year: 2016
  ident: 199_CR44
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.070
– volume: 141
  start-page: 39
  year: 2014
  ident: 199_CR42
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.07.047
– volume: 1
  start-page: 8488
  year: 2013
  ident: 199_CR23
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11667k
– volume: 3
  start-page: 1294
  year: 2010
  ident: 199_CR33
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00074d
– volume: 20
  start-page: 3474
  year: 2014
  ident: 199_CR38
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.12.037
– volume: 5
  start-page: 12653
  year: 2017
  ident: 199_CR3
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00863E
– volume: 122
  start-page: 214902
  year: 2017
  ident: 199_CR12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5002748
– volume: 165
  start-page: A2446
  year: 2018
  ident: 199_CR11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0181811jes
– volume: 29
  start-page: 165401
  year: 2018
  ident: 199_CR14
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaa7e3
– volume: 6
  start-page: 2866
  year: 2018
  ident: 199_CR43
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10013B
– volume: 195
  start-page: 7880
  year: 2010
  ident: 199_CR5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.036
– volume: 92
  start-page: 337
  year: 2018
  ident: 199_CR9
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-017-1113-0
– volume: 23
  start-page: 015301
  year: 2012
  ident: 199_CR29
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/1/015301
– volume: 10
  start-page: 42
  year: 2017
  ident: 199_CR31
  publication-title: Nano-Struct. Nano-Objects
  doi: 10.1016/j.nanoso.2017.03.008
– volume: 14
  start-page: 297
  year: 2018
  ident: 199_CR36
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.05.011
– volume: 51
  start-page: 145303
  year: 2018
  ident: 199_CR37
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aab130
– volume: 21
  start-page: 419
  year: 2018
  ident: 199_CR1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.035
– volume: 309
  start-page: 151
  year: 2017
  ident: 199_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.012
– volume: 34
  start-page: 2993
  year: 2017
  ident: 199_CR20
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-017-0205-z
– volume: 135
  start-page: 45723
  year: 2018
  ident: 199_CR32
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.45723
– volume: 3
  start-page: 855
  year: 2018
  ident: 199_CR15
  publication-title: MRS Adv.
  doi: 10.1557/adv.2018.139
– volume: 7
  start-page: A397
  year: 2004
  ident: 199_CR16
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1801631
– volume: 4
  start-page: 17555
  year: 2014
  ident: 199_CR45
  publication-title: RSC Adv.
  doi: 10.1039/c3ra47681b
– volume: 1
  start-page: 584
  year: 2017
  ident: 199_CR4
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C6QM00169F
– volume: 274
  start-page: 512
  year: 2015
  ident: 199_CR18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.126
– volume: 328
  start-page: 776
  year: 2017
  ident: 199_CR17
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.063
– volume: 17
  start-page: 1390
  year: 2013
  ident: 199_CR13
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272811317130006
– volume: 28
  start-page: 232
  year: 2016
  ident: 199_CR26
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.043
– volume: 29
  start-page: 777
  year: 2008
  ident: 199_CR24
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2008.29.4.777
– volume: 243
  start-page: 350
  year: 2013
  ident: 199_CR41
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.060
– volume: 401
  start-page: 37
  year: 2018
  ident: 199_CR8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.071
– volume: 54
  start-page: 421
  year: 2017
  ident: 199_CR7
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.06.022
– volume: 24
  start-page: 2547
  year: 2012
  ident: 199_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104940
– volume: 107
  start-page: 629
  year: 2016
  ident: 199_CR30
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.067
– volume-title: Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications
  year: 1999
  ident: 199_CR2
  doi: 10.1007/978-1-4757-3058-6
– volume: 15
  start-page: 66
  year: 2015
  ident: 199_CR40
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.04.007
– volume: 199
  start-page: 200
  year: 2017
  ident: 199_CR39
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.04.086
– volume: 7
  start-page: 23515
  year: 2015
  ident: 199_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06107
SSID ssj0055620
Score 2.3926532
Snippet Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the...
Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 312
SubjectTerms Biotechnology
Capacitance
Carbon fibers
Catalysis
Charge transfer
Chemistry
Chemistry and Materials Science
Discharge
Electrochemical analysis
Electrodes
Electronic
Flux density
Graphitization
Industrial Chemistry/Chemical Engineering
Inorganic
Materials (Organic
Materials Science
Nanofibers
Porosity
Supercapacitors
Thin Films
화학공학
Title Mesoporous carbon nanofiber engineered for improved supercapacitor performance
URI https://link.springer.com/article/10.1007/s11814-018-0199-1
https://www.proquest.com/docview/2173835082
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002433473
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2019, 36(2), 227, pp.312-320
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0t5QAcdvkUBbaKECdQUBLHTXIsiMKC6IlKcLLsiYOqoqRK2gu_nnETb2nFrsQpiuIkjmfieeOZeQY4y1IvUIEXu1Iy7Ybc024SqNT1MkN-7nUN6ZnJthh074bh_TN_buq4K5vtbkOS85l6UexGxshkTJjkqyRxyeVZ536cxC1Y792-PNzYCZiTSa-XVgzFHiEeG8z86iFL5mgtL7MlpLkSHJ3bnP4veLK9rVNNxpezqbrE9xUix29-zjb8bDCo06uVZgd-6HwXNq7t1m-7sPWJpXAPBo-6KgimF7PKQVmqIndymZNSKl06ummpU4fgrzOar1HQSTWb6BLJEiNNGaUzWdQn7MOwf_N0fec22zC4yLg3dcMsQUJtmUxjQ0YfKelHvowjyYKkiwwzzVH7pqo-5pliSA43RkrFOkWpyJtjB9DKi1wfghMi2WTJYo4qCrVGkl6qWBgRDtHSZ9gGz0pDYMNRbrbKeBMLdmUzbIKGTZhhE34bzv_eMqkJOv7X-JRELMY4EoZW2xxfCzEuBTkPf0RogoQJb8OJ1QDR_NCVIM-NfHlCs0EbLqxAF5f_-cajb7U-hk0CZEmdFX4CrWk5078J9ExVh5S8f3U16DTK3oG1YdD7AN_d-YM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEL4oPqAPRlEjiroYnzRLtnVj3SMhElDgCRLemvbWGYIZZIP_7xU2EaMmPi3Lui25a3vf9e6-A3hIYsdTnsNtKZm2_cDRduSp2HYSQ37uNA3pmcm2GDa7Y_9lEkyKOu68zHYvQ5LrnXpb7EbGyGRMmOSrKLLJ5TkgLMBN24Kx1yq334AM-uZgxRDsEd4pQ5k_fWLHGO2nWbKDM7-FRtcWp3MCxwVUtFob3Z7Cnk5rUG2XHdpqcPSFTPAMhgOdzwlNkytvoczUPLVSmdLcUTqzdDFSxxahVGu6Pkqgm3y10BmSwURa2Zm12JYRnMO48zxqd-2iW4KNLHCWtp9ESOAqkTE3nPGhkm7oSh5K5kVNZJjoALVrit95kCiG5BdjqBTXMUpFThe7gEo6T_UlWD6S6ZSMB6hCX2vkEY8V80OCC1q6DOvglGITWFCJm44W72JLgmwkLUjSwkhauHV4_HxlseHR-GvwPelCzHAqDPu1ub7NxSwThPF7wjexvCioQ6NUlSjWXS7IwSKXm0CnV4enUn3bx7_-8epfo--g2h0N-qLfG75ewyFhqGiTyN2AyjJb6RvCKUt1u56XHyAQ3Tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60go-DaFWsVg3iSQkm2aRJjqVaWh_Fg4Xelt3JRkolKWn7_51tEmNFBU8hZJPAzO7ONzsz3wBcxZHlSMcKTCGYMl3PUmboyMi0Yk1-brU06ZnOthi0ekP3YeSNij6nszLbvQxJ5jUNmqUpmd9Oo_i2Knwjw6SzJ3QiVhia5P5s0G5s64k-dNrlVuyRcc8PWTTZHmGfMqz50ydWDNN6ksUrmPNbmHRpfbp7sFvARqOd63kf1lRSh61O2a2tDjtfiAUPYPCsZikha3LrDRSZTBMjEQnNI6kyQxUjVWQQYjXGy2MFupktpipDMp5IqzwzplVJwSEMu_evnZ5ZdE4wkXnW3HTjEAloxSIKNH-8L4Xt2yLwBXPCFjKMlYfK1oXwgRdLhuQjoy9loCIUkhwwdgS1JE3UMRgukhkVLPBQ-q5SGIRBJJnrE3RQwmbYAKsUG8eCVlx3t3jnFSGyljQnSXMtaW434PrzlWnOqfHX4EvSBZ_gmGsmbH19S_kk44T3-9zVcb3Qa0CzVBUv1uCMk7NF7jcBUKcBN6X6qse__vHkX6MvYPPlrsuf-oPHU9gmOBXmOd1NqM2zhTojyDKX58tp-QEAEuF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+carbon+nanofiber+engineered+for+improved+supercapacitor+performance&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Ghosh%2C+Subrata&rft.au=Wan+Dao+Yong&rft.au=Jin%2C+En+Mei&rft.au=Shyamal+Rao+Polaki&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=36&rft.issue=2&rft.spage=312&rft.epage=320&rft_id=info:doi/10.1007%2Fs11814-018-0199-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon