Mesoporous carbon nanofiber engineered for improved supercapacitor performance
Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-in...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 36; no. 2; pp. 312 - 320 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2019
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-018-0199-1 |
Cover
Abstract | Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9 Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode. |
---|---|
AbstractList | Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode.
Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs).
The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode KCI Citation Count: 36 Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9 Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode. |
Author | Ghosh, Subrata Yong, Wan Dao Jun, Hangbae Jin, En Mei Polaki, Shyamal Rao Jeong, Sang Mun |
Author_xml | – sequence: 1 givenname: Subrata surname: Ghosh fullname: Ghosh, Subrata organization: Department of Chemical Engineering, Chungbuk National University – sequence: 2 givenname: Wan Dao surname: Yong fullname: Yong, Wan Dao organization: Department of Chemical Engineering, Chungbuk National University – sequence: 3 givenname: En Mei surname: Jin fullname: Jin, En Mei email: kujie@naver.com organization: Department of Chemical Engineering, Chungbuk National University – sequence: 4 givenname: Shyamal Rao surname: Polaki fullname: Polaki, Shyamal Rao organization: Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute – sequence: 5 givenname: Sang Mun surname: Jeong fullname: Jeong, Sang Mun email: smjeong@chungbuk.ac.kr organization: Department of Chemical Engineering, Chungbuk National University – sequence: 6 givenname: Hangbae surname: Jun fullname: Jun, Hangbae organization: Department of Environmental Engineering, Chungbuk National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002433473$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kFtLAzEQhYNUsK3-AN8WfPJhNbO72SSPpXgpeAGpzyGbJiW9JGuyK_jvTV1BEPRhGCZzvuHkTNDIeacROgd8BRjT6wjAoMoxsFSc53CExsApyWlR4BEa44LUOQCQEzSJcYMxIXWBx-jpUUff-uD7mCkZGu8yJ503ttEh025tndZBrzLjQ2b3bfDvaYh9q4OSrVS2S-9pSOu9dEqfomMjd1Gfffcper29Wc7v84fnu8V89pCrkuAurwxXUJdGrhiv6po2EihIRmVZ8FqVymiiNCTPFSOmKVVVc0WbhumVkg3nrJyiy-GuC0ZslRVe2q--9mIbxOxluRAV5hxzkrQXgza5f-t17MTG98Ele6IAWrLkiBVJRQeVCj7GoI1In5Od9a4L0u4EYHEIWgxBixS0OAQtIJHwi2yD3cvw8S9TDExMWrfW4cfT39AnH6SSkQ |
CitedBy_id | crossref_primary_10_1039_D0TA05100D crossref_primary_10_1007_s11814_024_00018_3 crossref_primary_10_1063_5_0177740 crossref_primary_10_1021_acsanm_1c01056 crossref_primary_10_1016_j_jiec_2021_04_034 crossref_primary_10_1016_j_mset_2022_10_004 crossref_primary_10_1002_smll_202005414 crossref_primary_10_1002_smtd_202200049 crossref_primary_10_1002_pat_5015 crossref_primary_10_1088_1361_6528_abd8f8 crossref_primary_10_1016_j_jelechem_2020_114564 crossref_primary_10_1039_D0NR03425H crossref_primary_10_1016_j_electacta_2023_142921 crossref_primary_10_1016_j_carbpol_2024_122955 crossref_primary_10_1007_s11814_020_0729_5 crossref_primary_10_1016_j_diamond_2023_109803 crossref_primary_10_1515_epoly_2020_0068 crossref_primary_10_1002_ente_202000918 crossref_primary_10_1016_j_jiec_2019_08_026 crossref_primary_10_1002_er_8715 crossref_primary_10_1016_j_desal_2024_117857 crossref_primary_10_3390_polym12122884 crossref_primary_10_1007_s40820_019_0337_2 crossref_primary_10_1016_j_micromeso_2020_110121 crossref_primary_10_33961_jecst_2020_00892 crossref_primary_10_1007_s10854_020_04241_6 crossref_primary_10_1016_j_cej_2021_130805 crossref_primary_10_1002_er_6896 crossref_primary_10_1016_j_nanoso_2024_101137 crossref_primary_10_1039_D1TA01802G crossref_primary_10_1016_j_jpowsour_2024_234882 crossref_primary_10_1007_s11814_021_1055_2 crossref_primary_10_1039_C9RA07157A crossref_primary_10_3390_ma14040948 crossref_primary_10_1155_er_9740805 crossref_primary_10_1016_j_apsusc_2020_148354 crossref_primary_10_1016_j_nanoen_2020_105667 crossref_primary_10_1002_est2_70061 crossref_primary_10_3390_molecules26030724 crossref_primary_10_33961_jecst_2022_00619 crossref_primary_10_1016_j_est_2022_105698 crossref_primary_10_1007_s11814_021_1041_8 crossref_primary_10_1016_j_est_2025_115381 crossref_primary_10_2166_ws_2023_334 crossref_primary_10_1016_j_electacta_2019_07_043 crossref_primary_10_1088_1361_6528_abf87b crossref_primary_10_4028_www_scientific_net_AEF_40_25 crossref_primary_10_1007_s42765_024_00379_8 crossref_primary_10_1021_acsaem_2c00417 crossref_primary_10_1039_D4TA03192J crossref_primary_10_1016_j_est_2019_100962 |
Cites_doi | 10.1149/2.0381501jes 10.1016/j.carbon.2015.12.068 10.1063/1.1599963 10.1016/j.jtice.2018.01.003 10.1016/j.carbon.2015.12.078 10.1007/s11814-018-0089-6 10.1016/j.apsusc.2015.05.038 10.1016/j.jpowsour.2016.05.070 10.1016/j.electacta.2014.07.047 10.1039/c3ta11667k 10.1039/c0ee00074d 10.1016/j.jiec.2013.12.037 10.1039/C7TA00863E 10.1063/1.5002748 10.1149/2.0181811jes 10.1088/1361-6528/aaa7e3 10.1039/C7TA10013B 10.1016/j.jpowsour.2010.06.036 10.1007/s12648-017-1113-0 10.1088/0957-4484/23/1/015301 10.1016/j.nanoso.2017.03.008 10.1016/j.ensm.2018.05.011 10.1088/1361-6463/aab130 10.1016/j.mattod.2018.01.035 10.1016/j.cej.2016.10.012 10.1007/s11814-017-0205-z 10.1002/app.45723 10.1557/adv.2018.139 10.1149/1.1801631 10.1039/c3ra47681b 10.1039/C6QM00169F 10.1016/j.jpowsour.2014.10.126 10.1016/j.cej.2017.07.063 10.2174/1385272811317130006 10.1016/j.nanoen.2016.08.043 10.5012/bkcs.2008.29.4.777 10.1016/j.jpowsour.2013.06.060 10.1016/j.jpowsour.2018.08.071 10.1016/j.jiec.2017.06.022 10.1002/adma.201104940 10.1016/j.carbon.2016.06.067 10.1007/978-1-4757-3058-6 10.1016/j.nanoen.2015.04.007 10.1016/j.matlet.2017.04.086 10.1021/acsami.5b06107 |
ContentType | Journal Article |
Copyright | Korean Institute of Chemical Engineers, Seoul, Korea 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Korean Institute of Chemical Engineers, Seoul, Korea 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-018-0199-1 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 320 |
ExternalDocumentID | oai_kci_go_kr_ARTI_4099095 10_1007_s11814_018_0199_1 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c350t-4f9c163fad894667ba171a87a3296c3cfe5ce1025485fb3c469c7bb8edcab9983 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:39 EST 2024 Fri Jul 25 11:09:40 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Tue Jul 01 03:29:37 EDT 2025 Fri Feb 21 02:35:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Supercapacitor Electrospinning Specific Capacitance Tandem Cell Porous Carbon Nanofiber |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-4f9c163fad894667ba171a87a3296c3cfe5ce1025485fb3c469c7bb8edcab9983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2173835082 |
PQPubID | 2044390 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_4099095 proquest_journals_2173835082 crossref_citationtrail_10_1007_s11814_018_0199_1 crossref_primary_10_1007_s11814_018_0199_1 springer_journals_10_1007_s11814_018_0199_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | FanL.YangL.NiX.HanJ.GuoR.ZhangC.Carbon201610762910.1016/j.carbon.2016.06.0671:CAS:528:DC%2BC28XhtVGmtbjF EftekhariA.J. Mater. Chem. A20186286610.1039/C7TA10013B1:CAS:528:DC%2BC1cXjt1KqtA%3D%3D KimC.YangK.Appl. Phys. Lett.200383121610.1063/1.15999631:CAS:528:DC%2BD3sXmtFOksLo%3D SankarK.V.SelvanR.K.RSC Adv.201441755510.1039/c3ra47681b1:CAS:528:DC%2BC2cXmtlSlsbc%3D MaoX.HattonT.A.RutledgeG.C.Curr. Org. Chem.201317139010.2174/13852728113171300061:CAS:528:DC%2BC3sXht1WrtLnO InagakiM.KonnoH.TanaikeO.J. Power Sources2010195788010.1016/j.jpowsour.2010.06.0361:CAS:528:DC%2BC3cXhtFWnsr3M KimC. H.KimB.-H.J. Power Sources201527451210.1016/j.jpowsour.2014.10.1261:CAS:528:DC%2BC2cXhvVWmurrO KimC.YangK.-S.LeeW.-J.Electrochem. Solid-State Lett.20047A39710.1149/1.18016311:CAS:528:DC%2BD2cXptFegsr4%3D GhoshS.SahooG.PolakiS.R.KrishnaN. G.KamruddinM.MathewsT.J. Appl. Phys.201712221490210.1063/1.50027481:CAS:528:DC%2BC2sXhvFeku7bF KimB.-H.YangK. S.J. Ind. Eng. Chem.201420347410.1016/j.jiec.2013.12.0371:CAS:528:DC%2BC2cXitVemtbY%3D StollerM.D.RuoffR. S.Energy Environ. Sci.20103129410.1039/c0ee00074d1:CAS:528:DC%2BC3cXht1yrsbnM DingR.WuH.ThungaM.BowlerN.KesslerM.R.Carbon201610012610.1016/j.carbon.2015.12.0781:CAS:528:DC%2BC28XmtFCmug%3D%3D WangJ.TangJ.XuY.DingB.ChangZ.WangY.HaoX.DouH.KimJ. H.ZhangX.YamauchiY.Nano Energy20162823210.1016/j.nanoen.2016.08.0431:CAS:528:DC%2BC28XhsVKqsLjJ CaiJ.NiuH.WangH.ShaoH.FangJ.HeJ.XiongH.MaC.LinT.J. Power Sources201632430210.1016/j.jpowsour.2016.05.0701:CAS:528:DC%2BC28XoslShsrY%3D KimM.KimY.LeeK.M.JeongS.Y.LeeE.BaeckS.H.ShimS. E.Carbon20169960710.1016/j.carbon.2015.12.0681:CAS:528:DC%2BC28XhsFaksQ%3D%3D HongS.LeeS.PaikU.Electrochim. Acta20141413910.1016/j.electacta.2014.07.0471:CAS:528:DC%2BC2cXhtlWls7rJ GhoshS.JeongS. M.PolakiS.R.Korean J. Chem. Eng.201835138910.1007/s11814-018-0089-61:CAS:528:DC%2BC1cXht1CjtrjL JeongJ. H.KimB.-H.J. Taiwan Inst. Chem. Eng.20188417910.1016/j.jtice.2018.01.0031:CAS:528:DC%2BC1cXlt12qsw%3D%3D SchütterC.Ramirez-CastroC.OljacaM.PasseriniS.WinterM.BalducciA.J. Electrochem. Soc.2015162A4410.1149/2.0381501jes1:CAS:528:DC%2BC2cXitVCrsr3F ConwayB. E.Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications199910.1007/978-1-4757-3058-6 KimY.-S.KumarK.FisherF.T.YangE.-H.Nanotechnology20122301530110.1088/0957-4484/23/1/0153011:CAS:528:DC%2BC38Xht12lu7s%3D22155846 XiaL.YuL.HuD.ChenG.Z.Mater. Chem. Front.2017158410.1039/C6QM00169F1:CAS:528:DC%2BC2sXhs1els7nO LinZ.GoikoleaE.BalducciA.NaoiK.TabernaP. L.SalanneM.YushinG.SimonP.Mater. Today20182141910.1016/j.mattod.2018.01.0351:CAS:528:DC%2BC1cXisFKrtLw%3D GhoshS.MathewsT.GuptaB.DasA.KrishnaN.G.KamruddinM.Nano-Struct. Nano-Objects2017104210.1016/j.nanoso.2017.03.0081:CAS:528:DC%2BC2sXhtVWrsbfE SahooG.PolakiS.R.GhoshS.KrishnaN. G.KamruddinM.OstrikovK.Energy Storage Mater.20181429710.1016/j.ensm.2018.05.011 ZhouD.-D.LiW.-Y.DongX.-L.WangY.-G.WangC.-X.XiaY.-Y.J. Mater. Chem. A20131848810.1039/c3ta11667k1:CAS:528:DC%2BC3sXhtVCqurvI ParkS.-J.ImS.-H.Bull. Korean Chem. Soc.20082977710.5012/bkcs.2008.29.4.7771:CAS:528:DC%2BD1cXmtlaqsbo%3D JinE. M.LimJ. G.JeongS. M.J. Ind. Eng. Chem.20175442110.1016/j.jiec.2017.06.0221:CAS:528:DC%2BC2sXhtVGktb7E ChengY.HuangL.XiaoX.YaoB.YuanL.LiT.HuZ.WangB.WanJ.ZhouJ.Nano Energy2015156610.1016/j.nanoen.2015.04.0071:CAS:528:DC%2BC2MXnsFygsLo%3D CakiciM.KakarlaR.R.Alonso-MarroquinF.Chem. Eng. J.201730915110.1016/j.cej.2016.10.0121:CAS:528:DC%2BC28XhslWju7%2FE ChoudhuryA.DeyB.MahapatraS.S.KimD.-W.YangK.-S.YangD. J.Nanotechnology20182916540110.1088/1361-6528/aaa7e31:CAS:528:DC%2BC1cXitFyjt77O29334481 GhoshS.GanesanK.PolakiS.MathewsT.DharaS.KamruddinM.TyagiA.Appl. Surf. Sci.201534957610.1016/j.apsusc.2015.05.0381:CAS:528:DC%2BC2MXosFKmsL4%3D GhoshS.PolakiS.R.KamruddinM.JeongS. M.OstrikovK.K.J. Phys. D: Appl. Phys.20185114530310.1088/1361-6463/aab1301:CAS:528:DC%2BC1cXhslWlsLzN BorensteinA.HannaO.AttiasR.LuskiS.BrousseT.AurbachD.J. Mater. Chem. A201751265310.1039/C7TA00863E1:CAS:528:DC%2BC2sXnslKnsLk%3D LeeW.-J.JeongS.LeeH.KimB.-J.AnK.-H.ParkY.-K.JungS.-C.Korean J. Chem. Eng.201734299310.1007/s11814-017-0205-z1:CAS:528:DC%2BC2sXhsVejtbjJ MichioI.YingY.FeiyuK.Adv. Mater.201224254710.1002/adma.2011049401:CAS:528:DC%2BC38Xls1eit78%3D CheeW.K.LimH. N.ZainalZ.HarrisonI.AndouY.HuangN. M.AltarawnehM.JiangZ.T.Mater. Lett.201719920010.1016/j.matlet.2017.04.0861:CAS:528:DC%2BC2sXmsl2nu7c%3D GhoshS.PolakiS.R.AjikumarP.KrishnaN.G.KamruddinM.Indian J. Phys.20189233710.1007/s12648-017-1113-01:CAS:528:DC%2BC2sXhslSkurrE LiuY.ZhouJ.ChenL.ZhangP.FuW.ZhaoH.MaY.PanX.ZhangZ.HanW.XieE.ACS Appl. Mater. Interfaces201572351510.1021/acsami.5b061071:CAS:528:DC%2BC2MXhs1ejs7vM26449440 IsmarE.KarazehirT.AtesM.SaracA. S.J. Appl. Polym. Sci.20181354572310.1002/app.457231:CAS:528:DC%2BC2sXhsVKqsbfM IslamN.Ferdous HoqueM.N.ZuY.WangS.FanZ.MRS Adv.2018385510.1557/adv.2018.1391:CAS:528:DC%2BC1cXns12msb4%3D ChodankarN.R.JiS.-H.KimD.-H.J. Electrochem. Soc.2018165A244610.1149/2.0181811jes1:CAS:528:DC%2BC1cXitVOltbfE SamuelE.JoshiB.JoH. S.KimY. I.AnS.SwihartM.T.YunJ. M.KimK. H.YoonS. S.Chem. Eng. J.201732877610.1016/j.cej.2017.07.0631:CAS:528:DC%2BC2sXht1aktrzO DongQ.WangG.HuH.YangJ.QianB.LingZ.QiuJ.J. Power Sources201324335010.1016/j.jpowsour.2013.06.0601:CAS:528:DC%2BC3sXht12hsrjN SahooG.PolakiS.R.GhoshS.KrishnaN.G.KamruddinM.J. Power Sources20184013710.1016/j.jpowsour.2018.08.0711:CAS:528:DC%2BC1cXhs1altbjE W.-J. Lee (199_CR20) 2017; 34 S. Ghosh (199_CR6) 2018; 35 N.R. Chodankar (199_CR11) 2018; 165 S. Ghosh (199_CR31) 2017; 10 A. Borenstein (199_CR3) 2017; 5 C. H. Kim (199_CR18) 2015; 274 Y. Cheng (199_CR40) 2015; 15 L. Xia (199_CR4) 2017; 1 Z. Lin (199_CR1) 2018; 21 M.D. Stoller (199_CR33) 2010; 3 A. Choudhury (199_CR14) 2018; 29 S.-J. Park (199_CR24) 2008; 29 S. Hong (199_CR42) 2014; 141 S. Ghosh (199_CR9) 2018; 92 X. Mao (199_CR13) 2013; 17 A. Eftekhari (199_CR43) 2018; 6 L. Fan (199_CR30) 2016; 107 D.-D. Zhou (199_CR23) 2013; 1 M. Kim (199_CR27) 2016; 99 J. Cai (199_CR44) 2016; 324 C. Schütter (199_CR10) 2015; 162 I. Michio (199_CR21) 2012; 24 S. Ghosh (199_CR35) 2015; 349 G. Sahoo (199_CR8) 2018; 401 B.-H. Kim (199_CR38) 2014; 20 Q. Dong (199_CR41) 2013; 243 E. M. Jin (199_CR7) 2017; 54 R. Ding (199_CR34) 2016; 100 E. Ismar (199_CR32) 2018; 135 M. Inagaki (199_CR5) 2010; 195 N. Islam (199_CR15) 2018; 3 Y. Liu (199_CR25) 2015; 7 C. Kim (199_CR16) 2004; 7 M. Cakici (199_CR19) 2017; 309 S. Ghosh (199_CR37) 2018; 51 E. Samuel (199_CR17) 2017; 328 K.V. Sankar (199_CR45) 2014; 4 W.K. Chee (199_CR39) 2017; 199 Y.-S. Kim (199_CR29) 2012; 23 J. Wang (199_CR26) 2016; 28 S. Ghosh (199_CR12) 2017; 122 B. E. Conway (199_CR2) 1999 C. Kim (199_CR22) 2003; 83 J. H. Jeong (199_CR28) 2018; 84 G. Sahoo (199_CR36) 2018; 14 |
References_xml | – reference: FanL.YangL.NiX.HanJ.GuoR.ZhangC.Carbon201610762910.1016/j.carbon.2016.06.0671:CAS:528:DC%2BC28XhtVGmtbjF – reference: SchütterC.Ramirez-CastroC.OljacaM.PasseriniS.WinterM.BalducciA.J. Electrochem. Soc.2015162A4410.1149/2.0381501jes1:CAS:528:DC%2BC2cXitVCrsr3F – reference: HongS.LeeS.PaikU.Electrochim. Acta20141413910.1016/j.electacta.2014.07.0471:CAS:528:DC%2BC2cXhtlWls7rJ – reference: SankarK.V.SelvanR.K.RSC Adv.201441755510.1039/c3ra47681b1:CAS:528:DC%2BC2cXmtlSlsbc%3D – reference: MaoX.HattonT.A.RutledgeG.C.Curr. Org. Chem.201317139010.2174/13852728113171300061:CAS:528:DC%2BC3sXht1WrtLnO – reference: GhoshS.GanesanK.PolakiS.MathewsT.DharaS.KamruddinM.TyagiA.Appl. Surf. Sci.201534957610.1016/j.apsusc.2015.05.0381:CAS:528:DC%2BC2MXosFKmsL4%3D – reference: ChodankarN.R.JiS.-H.KimD.-H.J. Electrochem. Soc.2018165A244610.1149/2.0181811jes1:CAS:528:DC%2BC1cXitVOltbfE – reference: MichioI.YingY.FeiyuK.Adv. Mater.201224254710.1002/adma.2011049401:CAS:528:DC%2BC38Xls1eit78%3D – reference: CaiJ.NiuH.WangH.ShaoH.FangJ.HeJ.XiongH.MaC.LinT.J. Power Sources201632430210.1016/j.jpowsour.2016.05.0701:CAS:528:DC%2BC28XoslShsrY%3D – reference: KimC. H.KimB.-H.J. Power Sources201527451210.1016/j.jpowsour.2014.10.1261:CAS:528:DC%2BC2cXhvVWmurrO – reference: GhoshS.MathewsT.GuptaB.DasA.KrishnaN.G.KamruddinM.Nano-Struct. Nano-Objects2017104210.1016/j.nanoso.2017.03.0081:CAS:528:DC%2BC2sXhtVWrsbfE – reference: GhoshS.PolakiS.R.KamruddinM.JeongS. M.OstrikovK.K.J. Phys. D: Appl. Phys.20185114530310.1088/1361-6463/aab1301:CAS:528:DC%2BC1cXhslWlsLzN – reference: ZhouD.-D.LiW.-Y.DongX.-L.WangY.-G.WangC.-X.XiaY.-Y.J. Mater. Chem. A20131848810.1039/c3ta11667k1:CAS:528:DC%2BC3sXhtVCqurvI – reference: KimY.-S.KumarK.FisherF.T.YangE.-H.Nanotechnology20122301530110.1088/0957-4484/23/1/0153011:CAS:528:DC%2BC38Xht12lu7s%3D22155846 – reference: LeeW.-J.JeongS.LeeH.KimB.-J.AnK.-H.ParkY.-K.JungS.-C.Korean J. Chem. Eng.201734299310.1007/s11814-017-0205-z1:CAS:528:DC%2BC2sXhsVejtbjJ – reference: WangJ.TangJ.XuY.DingB.ChangZ.WangY.HaoX.DouH.KimJ. H.ZhangX.YamauchiY.Nano Energy20162823210.1016/j.nanoen.2016.08.0431:CAS:528:DC%2BC28XhsVKqsLjJ – reference: GhoshS.PolakiS.R.AjikumarP.KrishnaN.G.KamruddinM.Indian J. Phys.20189233710.1007/s12648-017-1113-01:CAS:528:DC%2BC2sXhslSkurrE – reference: InagakiM.KonnoH.TanaikeO.J. Power Sources2010195788010.1016/j.jpowsour.2010.06.0361:CAS:528:DC%2BC3cXhtFWnsr3M – reference: SahooG.PolakiS.R.GhoshS.KrishnaN.G.KamruddinM.J. Power Sources20184013710.1016/j.jpowsour.2018.08.0711:CAS:528:DC%2BC1cXhs1altbjE – reference: KimC.YangK.-S.LeeW.-J.Electrochem. Solid-State Lett.20047A39710.1149/1.18016311:CAS:528:DC%2BD2cXptFegsr4%3D – reference: StollerM.D.RuoffR. S.Energy Environ. Sci.20103129410.1039/c0ee00074d1:CAS:528:DC%2BC3cXht1yrsbnM – reference: ChoudhuryA.DeyB.MahapatraS.S.KimD.-W.YangK.-S.YangD. J.Nanotechnology20182916540110.1088/1361-6528/aaa7e31:CAS:528:DC%2BC1cXitFyjt77O29334481 – reference: CheeW.K.LimH. N.ZainalZ.HarrisonI.AndouY.HuangN. M.AltarawnehM.JiangZ.T.Mater. Lett.201719920010.1016/j.matlet.2017.04.0861:CAS:528:DC%2BC2sXmsl2nu7c%3D – reference: IslamN.Ferdous HoqueM.N.ZuY.WangS.FanZ.MRS Adv.2018385510.1557/adv.2018.1391:CAS:528:DC%2BC1cXns12msb4%3D – reference: JeongJ. H.KimB.-H.J. Taiwan Inst. Chem. Eng.20188417910.1016/j.jtice.2018.01.0031:CAS:528:DC%2BC1cXlt12qsw%3D%3D – reference: KimB.-H.YangK. S.J. Ind. Eng. Chem.201420347410.1016/j.jiec.2013.12.0371:CAS:528:DC%2BC2cXitVemtbY%3D – reference: KimM.KimY.LeeK.M.JeongS.Y.LeeE.BaeckS.H.ShimS. E.Carbon20169960710.1016/j.carbon.2015.12.0681:CAS:528:DC%2BC28XhsFaksQ%3D%3D – reference: ConwayB. E.Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications199910.1007/978-1-4757-3058-6 – reference: DingR.WuH.ThungaM.BowlerN.KesslerM.R.Carbon201610012610.1016/j.carbon.2015.12.0781:CAS:528:DC%2BC28XmtFCmug%3D%3D – reference: XiaL.YuL.HuD.ChenG.Z.Mater. Chem. Front.2017158410.1039/C6QM00169F1:CAS:528:DC%2BC2sXhs1els7nO – reference: GhoshS.SahooG.PolakiS.R.KrishnaN. G.KamruddinM.MathewsT.J. Appl. Phys.201712221490210.1063/1.50027481:CAS:528:DC%2BC2sXhvFeku7bF – reference: ParkS.-J.ImS.-H.Bull. Korean Chem. Soc.20082977710.5012/bkcs.2008.29.4.7771:CAS:528:DC%2BD1cXmtlaqsbo%3D – reference: BorensteinA.HannaO.AttiasR.LuskiS.BrousseT.AurbachD.J. Mater. Chem. A201751265310.1039/C7TA00863E1:CAS:528:DC%2BC2sXnslKnsLk%3D – reference: SahooG.PolakiS.R.GhoshS.KrishnaN. G.KamruddinM.OstrikovK.Energy Storage Mater.20181429710.1016/j.ensm.2018.05.011 – reference: LinZ.GoikoleaE.BalducciA.NaoiK.TabernaP. L.SalanneM.YushinG.SimonP.Mater. Today20182141910.1016/j.mattod.2018.01.0351:CAS:528:DC%2BC1cXisFKrtLw%3D – reference: LiuY.ZhouJ.ChenL.ZhangP.FuW.ZhaoH.MaY.PanX.ZhangZ.HanW.XieE.ACS Appl. Mater. Interfaces201572351510.1021/acsami.5b061071:CAS:528:DC%2BC2MXhs1ejs7vM26449440 – reference: SamuelE.JoshiB.JoH. S.KimY. I.AnS.SwihartM.T.YunJ. M.KimK. H.YoonS. S.Chem. Eng. J.201732877610.1016/j.cej.2017.07.0631:CAS:528:DC%2BC2sXht1aktrzO – reference: EftekhariA.J. Mater. Chem. A20186286610.1039/C7TA10013B1:CAS:528:DC%2BC1cXjt1KqtA%3D%3D – reference: GhoshS.JeongS. M.PolakiS.R.Korean J. Chem. Eng.201835138910.1007/s11814-018-0089-61:CAS:528:DC%2BC1cXht1CjtrjL – reference: KimC.YangK.Appl. Phys. Lett.200383121610.1063/1.15999631:CAS:528:DC%2BD3sXmtFOksLo%3D – reference: JinE. M.LimJ. G.JeongS. M.J. Ind. Eng. Chem.20175442110.1016/j.jiec.2017.06.0221:CAS:528:DC%2BC2sXhtVGktb7E – reference: CakiciM.KakarlaR.R.Alonso-MarroquinF.Chem. Eng. J.201730915110.1016/j.cej.2016.10.0121:CAS:528:DC%2BC28XhslWju7%2FE – reference: ChengY.HuangL.XiaoX.YaoB.YuanL.LiT.HuZ.WangB.WanJ.ZhouJ.Nano Energy2015156610.1016/j.nanoen.2015.04.0071:CAS:528:DC%2BC2MXnsFygsLo%3D – reference: IsmarE.KarazehirT.AtesM.SaracA. S.J. Appl. Polym. Sci.20181354572310.1002/app.457231:CAS:528:DC%2BC2sXhsVKqsbfM – reference: DongQ.WangG.HuH.YangJ.QianB.LingZ.QiuJ.J. Power Sources201324335010.1016/j.jpowsour.2013.06.0601:CAS:528:DC%2BC3sXht12hsrjN – volume: 162 start-page: A44 year: 2015 ident: 199_CR10 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0381501jes – volume: 99 start-page: 607 year: 2016 ident: 199_CR27 publication-title: Carbon doi: 10.1016/j.carbon.2015.12.068 – volume: 83 start-page: 1216 year: 2003 ident: 199_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1599963 – volume: 84 start-page: 179 year: 2018 ident: 199_CR28 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.01.003 – volume: 100 start-page: 126 year: 2016 ident: 199_CR34 publication-title: Carbon doi: 10.1016/j.carbon.2015.12.078 – volume: 35 start-page: 1389 year: 2018 ident: 199_CR6 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-018-0089-6 – volume: 349 start-page: 576 year: 2015 ident: 199_CR35 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.038 – volume: 324 start-page: 302 year: 2016 ident: 199_CR44 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.070 – volume: 141 start-page: 39 year: 2014 ident: 199_CR42 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.07.047 – volume: 1 start-page: 8488 year: 2013 ident: 199_CR23 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11667k – volume: 3 start-page: 1294 year: 2010 ident: 199_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00074d – volume: 20 start-page: 3474 year: 2014 ident: 199_CR38 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.12.037 – volume: 5 start-page: 12653 year: 2017 ident: 199_CR3 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00863E – volume: 122 start-page: 214902 year: 2017 ident: 199_CR12 publication-title: J. Appl. Phys. doi: 10.1063/1.5002748 – volume: 165 start-page: A2446 year: 2018 ident: 199_CR11 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0181811jes – volume: 29 start-page: 165401 year: 2018 ident: 199_CR14 publication-title: Nanotechnology doi: 10.1088/1361-6528/aaa7e3 – volume: 6 start-page: 2866 year: 2018 ident: 199_CR43 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10013B – volume: 195 start-page: 7880 year: 2010 ident: 199_CR5 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.036 – volume: 92 start-page: 337 year: 2018 ident: 199_CR9 publication-title: Indian J. Phys. doi: 10.1007/s12648-017-1113-0 – volume: 23 start-page: 015301 year: 2012 ident: 199_CR29 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/1/015301 – volume: 10 start-page: 42 year: 2017 ident: 199_CR31 publication-title: Nano-Struct. Nano-Objects doi: 10.1016/j.nanoso.2017.03.008 – volume: 14 start-page: 297 year: 2018 ident: 199_CR36 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.011 – volume: 51 start-page: 145303 year: 2018 ident: 199_CR37 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aab130 – volume: 21 start-page: 419 year: 2018 ident: 199_CR1 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.035 – volume: 309 start-page: 151 year: 2017 ident: 199_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.012 – volume: 34 start-page: 2993 year: 2017 ident: 199_CR20 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0205-z – volume: 135 start-page: 45723 year: 2018 ident: 199_CR32 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45723 – volume: 3 start-page: 855 year: 2018 ident: 199_CR15 publication-title: MRS Adv. doi: 10.1557/adv.2018.139 – volume: 7 start-page: A397 year: 2004 ident: 199_CR16 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1801631 – volume: 4 start-page: 17555 year: 2014 ident: 199_CR45 publication-title: RSC Adv. doi: 10.1039/c3ra47681b – volume: 1 start-page: 584 year: 2017 ident: 199_CR4 publication-title: Mater. Chem. Front. doi: 10.1039/C6QM00169F – volume: 274 start-page: 512 year: 2015 ident: 199_CR18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.126 – volume: 328 start-page: 776 year: 2017 ident: 199_CR17 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.063 – volume: 17 start-page: 1390 year: 2013 ident: 199_CR13 publication-title: Curr. Org. Chem. doi: 10.2174/1385272811317130006 – volume: 28 start-page: 232 year: 2016 ident: 199_CR26 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.043 – volume: 29 start-page: 777 year: 2008 ident: 199_CR24 publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2008.29.4.777 – volume: 243 start-page: 350 year: 2013 ident: 199_CR41 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.060 – volume: 401 start-page: 37 year: 2018 ident: 199_CR8 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.08.071 – volume: 54 start-page: 421 year: 2017 ident: 199_CR7 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.06.022 – volume: 24 start-page: 2547 year: 2012 ident: 199_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201104940 – volume: 107 start-page: 629 year: 2016 ident: 199_CR30 publication-title: Carbon doi: 10.1016/j.carbon.2016.06.067 – volume-title: Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications year: 1999 ident: 199_CR2 doi: 10.1007/978-1-4757-3058-6 – volume: 15 start-page: 66 year: 2015 ident: 199_CR40 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.007 – volume: 199 start-page: 200 year: 2017 ident: 199_CR39 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.04.086 – volume: 7 start-page: 23515 year: 2015 ident: 199_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06107 |
SSID | ssj0055620 |
Score | 2.3926532 |
Snippet | Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the... Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 312 |
SubjectTerms | Biotechnology Capacitance Carbon fibers Catalysis Charge transfer Chemistry Chemistry and Materials Science Discharge Electrochemical analysis Electrodes Electronic Flux density Graphitization Industrial Chemistry/Chemical Engineering Inorganic Materials (Organic Materials Science Nanofibers Porosity Supercapacitors Thin Films 화학공학 |
Title | Mesoporous carbon nanofiber engineered for improved supercapacitor performance |
URI | https://link.springer.com/article/10.1007/s11814-018-0199-1 https://www.proquest.com/docview/2173835082 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002433473 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2019, 36(2), 227, pp.312-320 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0t5QAcdvkUBbaKECdQUBLHTXIsiMKC6IlKcLLsiYOqoqRK2gu_nnETb2nFrsQpiuIkjmfieeOZeQY4y1IvUIEXu1Iy7Ybc024SqNT1MkN-7nUN6ZnJthh074bh_TN_buq4K5vtbkOS85l6UexGxshkTJjkqyRxyeVZ536cxC1Y792-PNzYCZiTSa-XVgzFHiEeG8z86iFL5mgtL7MlpLkSHJ3bnP4veLK9rVNNxpezqbrE9xUix29-zjb8bDCo06uVZgd-6HwXNq7t1m-7sPWJpXAPBo-6KgimF7PKQVmqIndymZNSKl06ummpU4fgrzOar1HQSTWb6BLJEiNNGaUzWdQn7MOwf_N0fec22zC4yLg3dcMsQUJtmUxjQ0YfKelHvowjyYKkiwwzzVH7pqo-5pliSA43RkrFOkWpyJtjB9DKi1wfghMi2WTJYo4qCrVGkl6qWBgRDtHSZ9gGz0pDYMNRbrbKeBMLdmUzbIKGTZhhE34bzv_eMqkJOv7X-JRELMY4EoZW2xxfCzEuBTkPf0RogoQJb8OJ1QDR_NCVIM-NfHlCs0EbLqxAF5f_-cajb7U-hk0CZEmdFX4CrWk5078J9ExVh5S8f3U16DTK3oG1YdD7AN_d-YM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEL4oPqAPRlEjiroYnzRLtnVj3SMhElDgCRLemvbWGYIZZIP_7xU2EaMmPi3Lui25a3vf9e6-A3hIYsdTnsNtKZm2_cDRduSp2HYSQ37uNA3pmcm2GDa7Y_9lEkyKOu68zHYvQ5LrnXpb7EbGyGRMmOSrKLLJ5TkgLMBN24Kx1yq334AM-uZgxRDsEd4pQ5k_fWLHGO2nWbKDM7-FRtcWp3MCxwVUtFob3Z7Cnk5rUG2XHdpqcPSFTPAMhgOdzwlNkytvoczUPLVSmdLcUTqzdDFSxxahVGu6Pkqgm3y10BmSwURa2Zm12JYRnMO48zxqd-2iW4KNLHCWtp9ESOAqkTE3nPGhkm7oSh5K5kVNZJjoALVrit95kCiG5BdjqBTXMUpFThe7gEo6T_UlWD6S6ZSMB6hCX2vkEY8V80OCC1q6DOvglGITWFCJm44W72JLgmwkLUjSwkhauHV4_HxlseHR-GvwPelCzHAqDPu1ub7NxSwThPF7wjexvCioQ6NUlSjWXS7IwSKXm0CnV4enUn3bx7_-8epfo--g2h0N-qLfG75ewyFhqGiTyN2AyjJb6RvCKUt1u56XHyAQ3Tg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60go-DaFWsVg3iSQkm2aRJjqVaWh_Fg4Xelt3JRkolKWn7_51tEmNFBU8hZJPAzO7ONzsz3wBcxZHlSMcKTCGYMl3PUmboyMi0Yk1-brU06ZnOthi0ekP3YeSNij6nszLbvQxJ5jUNmqUpmd9Oo_i2Knwjw6SzJ3QiVhia5P5s0G5s64k-dNrlVuyRcc8PWTTZHmGfMqz50ydWDNN6ksUrmPNbmHRpfbp7sFvARqOd63kf1lRSh61O2a2tDjtfiAUPYPCsZikha3LrDRSZTBMjEQnNI6kyQxUjVWQQYjXGy2MFupktpipDMp5IqzwzplVJwSEMu_evnZ5ZdE4wkXnW3HTjEAloxSIKNH-8L4Xt2yLwBXPCFjKMlYfK1oXwgRdLhuQjoy9loCIUkhwwdgS1JE3UMRgukhkVLPBQ-q5SGIRBJJnrE3RQwmbYAKsUG8eCVlx3t3jnFSGyljQnSXMtaW434PrzlWnOqfHX4EvSBZ_gmGsmbH19S_kk44T3-9zVcb3Qa0CzVBUv1uCMk7NF7jcBUKcBN6X6qse__vHkX6MvYPPlrsuf-oPHU9gmOBXmOd1NqM2zhTojyDKX58tp-QEAEuF0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+carbon+nanofiber+engineered+for+improved+supercapacitor+performance&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Ghosh%2C+Subrata&rft.au=Wan+Dao+Yong&rft.au=Jin%2C+En+Mei&rft.au=Shyamal+Rao+Polaki&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=36&rft.issue=2&rft.spage=312&rft.epage=320&rft_id=info:doi/10.1007%2Fs11814-018-0199-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |