Mesoporous carbon nanofiber engineered for improved supercapacitor performance
Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-in...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 36; no. 2; pp. 312 - 320 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2019
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-018-0199-1 |
Cover
Loading…
Summary: | Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9 Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-018-0199-1 |