Robust ground plane region detection using multiple visual cues for obstacle avoidance of a mobile robot
This paper presents a vision-based obstacle avoidance design using a monocular camera onboard a mobile robot. A novel image processing procedure is developed to estimate the distance between the robot and obstacles based-on inverse perspective transformation (IPT) in an image plane. A robust image p...
Saved in:
Published in | Robotica Vol. 33; no. 2; pp. 436 - 450 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a vision-based obstacle avoidance design using a monocular camera onboard a mobile robot. A novel image processing procedure is developed to estimate the distance between the robot and obstacles based-on inverse perspective transformation (IPT) in an image plane. A robust image processing solution is proposed to detect and segment a drivable ground area within the camera view. The proposed method integrates robust feature matching with adaptive color segmentation for plane estimation and tracking to cope with variations in illumination and camera view. After IPT and ground region segmentation, distance measurement results are obtained similar to those of a laser range finder for mobile robot obstacle avoidance and navigation. The merit of this algorithm is that the mobile robot can have the capacity of path finding and obstacle avoidance by using a single monocular camera. Practical experimental results on a wheeled mobile robot show that the proposed imaging system successfully obtains distances of surrounding objects for reactive navigation in an indoor environment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0263-5747 1469-8668 |
DOI: | 10.1017/S0263574714000460 |