Combined data mining techniques based patient data outlier detection for healthcare safety

Purpose – Among the growing number of data mining (DM) techniques, outlier detection has gained importance in many applications and also attracted much attention in recent times. In the past, outlier detection researched papers appeared in a safety care that can view as searching for the needles in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent computing and cybernetics Vol. 9; no. 1; pp. 42 - 68
Main Authors Gebremeskel, Gebeyehu Belay, Yi, Chai, He, Zhongshi, Haile, Dawit
Format Journal Article
LanguageEnglish
Published Bingley Emerald Group Publishing Limited 14.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose – Among the growing number of data mining (DM) techniques, outlier detection has gained importance in many applications and also attracted much attention in recent times. In the past, outlier detection researched papers appeared in a safety care that can view as searching for the needles in the haystack. However, outliers are not always erroneous. Therefore, the purpose of this paper is to investigate the role of outliers in healthcare services in general and patient safety care, in particular. Design/methodology/approach – It is a combined DM (clustering and the nearest neighbor) technique for outliers’ detection, which provides a clear understanding and meaningful insights to visualize the data behaviors for healthcare safety. The outcomes or the knowledge implicit is vitally essential to a proper clinical decision-making process. The method is important to the semantic, and the novel tactic of patients’ events and situations prove that play a significant role in the process of patient care safety and medications. Findings – The outcomes of the paper is discussing a novel and integrated methodology, which can be inferring for different biological data analysis. It is discussed as integrated DM techniques to optimize its performance in the field of health and medical science. It is an integrated method of outliers detection that can be extending for searching valuable information and knowledge implicit based on selected patient factors. Based on these facts, outliers are detected as clusters and point events, and novel ideas proposed to empower clinical services in consideration of customers’ satisfactions. It is also essential to be a baseline for further healthcare strategic development and research works. Research limitations/implications – This paper mainly focussed on outliers detections. Outlier isolation that are essential to investigate the reason how it happened and communications how to mitigate it did not touch. Therefore, the research can be extended more about the hierarchy of patient problems. Originality/value – DM is a dynamic and successful gateway for discovering useful knowledge for enhancing healthcare performances and patient safety. Clinical data based outlier detection is a basic task to achieve healthcare strategy. Therefore, in this paper, the authors focussed on combined DM techniques for a deep analysis of clinical data, which provide an optimal level of clinical decision-making processes. Proper clinical decisions can obtain in terms of attributes selections that important to know the influential factors or parameters of healthcare services. Therefore, using integrated clustering and nearest neighbors techniques give more acceptable searched such complex data outliers, which could be fundamental to further analysis of healthcare and patient safety situational analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-378X
1756-3798
DOI:10.1108/IJICC-07-2015-0024