Predator: Predicting the Impact of Cancer Somatic Mutations on Protein-Protein Interactions

Since many biological processes are governed by protein-protein interactions, understanding which mutations lead to a disruption in these interactions is profoundly important for cancer research. Most of the existing methods focus on the stability of the protein without considering the specific effe...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 5; pp. 3163 - 3172
Main Authors Berber, Ibrahim, Erten, Cesim, Kazan, Hilal
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since many biological processes are governed by protein-protein interactions, understanding which mutations lead to a disruption in these interactions is profoundly important for cancer research. Most of the existing methods focus on the stability of the protein without considering the specific effects of a mutation on its interactions with other proteins. Here, we focus on somatic mutations that appear on the interface regions of the protein and predict the interactions that would be affected by a mutation of interest. We build an ensemble model, Predator, that classifies the interface mutations as disruptive or nondisruptive based on the predicted effects of mutations on specific protein-protein interactions. We show that Predator outperforms existing approaches in literature in terms of prediction accuracy. We then apply Predator on various TCGA cancer cohorts and perform comprehensive analysis at cohort level, patient level, and gene level in determining the genes whose interface mutations tend to yield a disruption in its interactions. The predictions obtained by Predator shed light on interesting patterns on several genes for each cohort regarding their potential as cancer drivers. Our analyses further reveal that the identified genes and their frequently disrupted partners exhibit patterns of mutually exclusivity across cancer cohorts under study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2023.3262119