Super-resolution surface mapping using the trajectories of molecular probes

The surface characterization of 'soft' materials presents a significant scientific challenge, particularly under 'wet' in situ conditions where a wide variety of non-covalent interactions may be relevant. Here we introduce a new chemical imaging method, MAPT (mapping using accumu...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 2; no. 1; p. 515
Main Authors Walder, Robert, Nelson, Nathaniel, Schwartz, Daniel K
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The surface characterization of 'soft' materials presents a significant scientific challenge, particularly under 'wet' in situ conditions where a wide variety of non-covalent interactions may be relevant. Here we introduce a new chemical imaging method, MAPT (mapping using accumulated probe trajectories) that generates images of surface interactions by distributing different aspects of molecular probe trajectories into distinct locations and then combining many trajectories to generate spatial maps. The maps are super-resolution in nature, because they are accumulated from highly localized single-molecule observations. Unlike other super-resolution techniques, which report only photon or point counts, our analysis generates spatial maps of physical quantities (adsorption rate, desorption probability, local surface diffusion coefficient, surface coverage/occupancy) that are directly associated with the molecular interactions between the probe molecule and the surface. We demonstrate the feasibility of this characterization using a surface patterned with various degrees of hydrophobicity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms1530