Multi-Contrast Complementary Learning for Accelerated MR Imaging

Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discom...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 3; pp. 1436 - 1447
Main Authors Li, Bangjun, Hu, Weifeng, Feng, Chun-Mei, Li, Yujun, Liu, Zhi, Xu, Yong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2023.3348328