Practical Fixed-Time Bipartite Synchronization of Uncertain Coupled Neural Networks Subject to Deception Attacks via Dual-Channel Event-Triggered Control
This article investigates the practical fixed-time synchronization of uncertain coupled neural networks via dual-channel event-triggered control. Contrary to some previous studies, the bipartite synchronization of signed graphs representing cooperative and antagonistic interactions is studied. The c...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 6; pp. 3615 - 3625 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article investigates the practical fixed-time synchronization of uncertain coupled neural networks via dual-channel event-triggered control. Contrary to some previous studies, the bipartite synchronization of signed graphs representing cooperative and antagonistic interactions is studied. The communication channel is introduced into deception attacks, which are described by Bernoulli's stochastic variables. Based on the concept of two channels, event-triggered mechanisms are designed for sensor-to-controller and controller-to-actuator channels to reduce communication consumption and controller update consumption as much as possible. Lyapunov and comparison theories are used to derive synchronization criteria and explicit expression of settling time. An example of Chua's circuit system is presented to demonstrate the feasibility of the obtained theoretical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2023.3338165 |