Operator growth and spread complexity in open quantum systems
Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator...
Saved in:
Published in | Europhysics letters Vol. 147; no. 3; pp. 38002 - 38008 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences, IOP Publishing and Società Italiana di Fisica
01.08.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator in time is a useful way to capture the complexity of the internal information dynamics of a system when subject to an environment and is, in principle, agnostic to the specific choice of operator basis. We demonstrate its effectiveness for the Sachdev-Ye-Kitaev (SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of operator strings. We prove that the former basis minimises spread complexity while the latter is an eigenbasis for high dissipation. In both cases, we probe the long-time dynamics of the model and the phenomenological effects of decoherence on the complexity of the dynamics. |
---|---|
AbstractList | Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator in time is a useful way to capture the complexity of the internal information dynamics of a system when subject to an environment and is, in principle, agnostic to the specific choice of operator basis. We demonstrate its effectiveness for the Sachdev-Ye-Kitaev (SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of operator strings. We prove that the former basis minimises spread complexity while the latter is an eigenbasis for high dissipation. In both cases, we probe the long-time dynamics of the model and the phenomenological effects of decoherence on the complexity of the dynamics. |
Author | Carolan, Eoin Campbell, Steve Deffner, Sebastian Kiely, Anthony |
Author_xml | – sequence: 1 givenname: Eoin orcidid: 0000-0003-1206-9884 surname: Carolan fullname: Carolan, Eoin organization: Centre for Quantum Engineering, Science, and Technology, University College Dublin Belfield, Dublin 4, Ireland – sequence: 2 givenname: Anthony orcidid: 0000-0002-0797-4671 surname: Kiely fullname: Kiely, Anthony organization: Centre for Quantum Engineering, Science, and Technology, University College Dublin Belfield, Dublin 4, Ireland – sequence: 3 givenname: Steve orcidid: 0000-0002-3427-9113 surname: Campbell fullname: Campbell, Steve organization: Centre for Quantum Engineering, Science, and Technology, University College Dublin Belfield, Dublin 4, Ireland – sequence: 4 givenname: Sebastian orcidid: 0000-0003-0504-6932 surname: Deffner fullname: Deffner, Sebastian organization: National Quantum Laboratory - College Park, MD 20740, USA |
BookMark | eNp9kM9LwzAUx4NMcJvePQa8WpcfTdocPMhwKgx22T0kbaoZa9IlKbr_3o6KgqDv8g7v-3nv8ZmBifPOAHCN0R0mSCwQESxjqGALVTONizMwxaTkWV6yfAKm3-MLMItxhxDGJeZTcL_pTFDJB_ga_Ht6g8rVMHbBqBpWvu325sOmI7QO-s44eOiVS30L4zEm08ZLcN6ofTRXX30OtqvH7fI5W2-eXpYP66yiDKUMi4pVJSYFqlFBieZCI02J4DzHWmkxFDGlMToXlGqFG9FUTc1Eo4uaGEPn4GZc2wV_6E1Mcuf74IaLkmJUIsb4sHcO-Jiqgo8xmEZWNqlkvUtB2b3ESJ5MyZMKeVIhR1MDiH6BXbCtCsf_kNsRsb77eebP-CdMtntQ |
CODEN | EULEEJ |
CitedBy_id | crossref_primary_10_1103_PhysRevB_111_064203 crossref_primary_10_1007_JHEP10_2024_043 crossref_primary_10_22331_q_2025_02_26_1651 |
Cites_doi | 10.1103/PRXQuantum.2.010306 10.1088/0031-8949/40/3/013 10.1007/JHEP11(2023)222 10.1103/PhysRevLett.131.220404 10.1103/PhysRevLett.125.130601 10.1007/JHEP03(2024)179 10.1038/s41598-018-30982-w 10.1103/PhysRevA.103.062214 10.1103/PhysRevB.108.075110 10.3390/e24030345 10.1007/JHEP05(2024)337 10.3390/e24060824 10.1007/JHEP12(2022)081 10.1103/PhysRevA.107.032418 10.22331/q-2023-07-11-1055 10.1103/PhysRevLett.70.3339 10.1103/PhysRevLett.131.160402 10.1007/JHEP01(2024)094 10.1007/JHEP06(2018)122 10.1088/0305-4470/30/10/035 10.1038/s42005-022-00985-1 10.1007/JHEP10(2019)264 10.1007/JHEP03(2023)054 10.1007/JHEP05(2022)174 10.1063/5.0199335 10.1007/JHEP07(2022)151 10.1088/1126-6708/2008/10/065 10.1088/2399-6528/ac8f19 10.1146/annurev-conmatphys-031720-030658 10.1103/PhysRevD.106.046007 10.1007/JHEP12(2023)066 10.1137/16M1084195 10.1103/PhysRevB.105.075131 10.1103/PhysRevE.104.034112 10.1007/JHEP08(2023)099 10.1103/PhysRevB.109.125149 10.1103/PhysRevResearch.4.013041 10.1007/JHEP10(2018)127 10.1063/1.1703862 10.1111/j.2006.0030-1299.14714.x 10.1103/PhysRevB.106.205150 10.1103/PhysRevResearch.4.L022068 10.1007/JHEP10(2023)157 10.1103/PhysRevResearch.6.013309 10.1121/1.2016299 |
ContentType | Journal Article |
Copyright | Copyright © 2024 The author(s) Copyright © 2024 The author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2024 The author(s) – notice: Copyright © 2024 The author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1209/0295-5075/ad5b17 |
DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1286-4854 |
ExternalDocumentID | 10_1209_0295_5075_ad5b17 epl24100312 |
GroupedDBID | -~X 1JI 4.4 5B3 5GY 5VS 5ZH 6TJ 7.M 7.Q AAFWJ AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABGRX ABQJV ABVAM ACAFW ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT AZPVJ CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK H~9 IHE IJHAN IOP IZVLO KOT LAP MV1 N5L N9A O3W P2P PIG PJBAE R4D RED REP RID RIN RNS ROL RPA SJN SY9 TN5 TSCCA UCJ UPT ZMT ~02 AAYXX ABNSH CITATION 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c350t-19c5c81270d0732b69b0b3296641bab99992e8eeb4933ba1f9fcfd59fb7d2ee3 |
IEDL.DBID | O3W |
ISSN | 0295-5075 |
IngestDate | Mon Jun 30 16:29:35 EDT 2025 Tue Jul 01 00:30:16 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 Wed Aug 28 02:36:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License (CC-BY). Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-19c5c81270d0732b69b0b3296641bab99992e8eeb4933ba1f9fcfd59fb7d2ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3427-9113 0000-0002-0797-4671 0000-0003-1206-9884 0000-0003-0504-6932 |
OpenAccessLink | https://iopscience.iop.org/article/10.1209/0295-5075/ad5b17 |
PQID | 3108055607 |
PQPubID | 1806341 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1209_0295_5075_ad5b17 crossref_primary_10_1209_0295_5075_ad5b17 proquest_journals_3108055607 iop_journals_10_1209_0295_5075_ad5b17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240801 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240801 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | Europhysics letters |
PublicationTitleAbbrev | EPL |
PublicationTitleAlternate | EPL |
PublicationYear | 2024 |
Publisher | EDP Sciences, IOP Publishing and Società Italiana di Fisica IOP Publishing |
Publisher_xml | – name: EDP Sciences, IOP Publishing and Società Italiana di Fisica – name: IOP Publishing |
References | Liu (epl24100312bib32) 2023; 5 Jost (epl24100312bib54) 2006; 113 Dowling (epl24100312bib8) 2024; 131 Noh (epl24100312bib45) 2021; 104 Kulkarni (epl24100312bib62) 2022; 106 Xu (epl24100312bib23) 2019; 122 Schuster (epl24100312bib30) 2023; 131 Hörnedal (epl24100312bib39) 2022; 5 Balasubramanian (epl24100312bib15) 2022; 106 Li (epl24100312bib49) 2022; 24 Sekino (epl24100312bib59) 2008; 2008 Sachdev (epl24100312bib58) 1993; 70 Bhattacharya (epl24100312bib16) 2024; 2024 Sá (epl24100312bib65) 2022; 4 Larzul (epl24100312bib21) 2022 Kawabata (epl24100312bib64) 2023; 4 García‐García (epl24100312bib26) 2024 Blocher (epl24100312bib51) 2024; 6 Parker (epl24100312bib29) 2019; 9 Belyansky (epl24100312bib60) 2020; 125 Dyson (epl24100312bib3) 1962; 3 Jelinek (epl24100312bib55) 1977; 62 Bhattacharjee (epl24100312bib36) 2023; 2023 Xu (epl24100312bib61) 2021; 103 Khemani (epl24100312bib9) 2018; 8 Caputa (epl24100312bib33) 2022; 4 Bhattacharya (epl24100312bib34) 2023; 2023 Rakovszky (epl24100312bib12) 2022; 105 Wienand (epl24100312bib11) 2024 Weinstein (epl24100312bib24) 2023; 131 Srivatsa (epl24100312bib35) 2024; 109 Tripathy (epl24100312bib25) 2024; 34 Bhattacharjee (epl24100312bib43) 2022; 106 Bhattacharjee (epl24100312bib66) 2024; 2024 Rabinovici (epl24100312bib44) 2022; 2022 Berry (epl24100312bib1) 1989; 40 von Keyserlingk (epl24100312bib14) 2018; 8 Caputa (epl24100312bib17) 2024; 2024 Kawabata (epl24100312bib63) 2023; 108 Bhattacharya (epl24100312bib37) 2022; 2022 Mohan (epl24100312bib22) 2023; 2023 Chenu (epl24100312bib5) 2018; 8 Bhattacharjee (epl24100312bib42) 2023; 2023 Touil (epl24100312bib19) 2021; 2 Kadelburg (epl24100312bib57) 2005; 8 Blake (epl24100312bib10) 2018; 2018 García‐Mata (epl24100312bib6) 2022 Omanakuttan (epl24100312bib50) 2023; 107 Hörnedal (epl24100312bib40) 2023; 7 Wigner (epl24100312bib2) 1993 Gaaf (epl24100312bib38) 2017; 39 Campbell (epl24100312bib53) 1966; 5 Fisher (epl24100312bib56) 2023; 14 Liu (epl24100312bib31) 2024 Bhattacharyya (epl24100312bib18) 2023; 2023 Şenyaşa (epl24100312bib48) 2022; 24 Roberts (epl24100312bib67) 2018; 2018 Rakovszky (epl24100312bib13) 2018; 8 Bhattacharjee (epl24100312bib46) 2022; 2022 Ryan (epl24100312bib68) 2022; 6 Zanardi (epl24100312bib20) 2021; 103 Xu (epl24100312bib7) 2020; 124 Barbón (epl24100312bib52) 2019; 2019 Sá (epl24100312bib27) 2020; 10 Huh (epl24100312bib47) 2023 Li (epl24100312bib28) 2021; 127 Kettemann (epl24100312bib4) 1997; 30 Suchsland (epl24100312bib41) 2023 |
References_xml | – volume: 2 year: 2021 ident: epl24100312bib19 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.010306 – year: 2023 ident: epl24100312bib47 – year: 2022 ident: epl24100312bib6 – volume: 8 year: 2018 ident: epl24100312bib14 publication-title: Phys. Rev. X – year: 2024 ident: epl24100312bib31 – volume: 103 year: 2021 ident: epl24100312bib61 publication-title: Phys. Rev. B – volume: 40 start-page: 335 year: 1989 ident: epl24100312bib1 publication-title: Phys. Scr. doi: 10.1088/0031-8949/40/3/013 – volume: 2023 start-page: 222 year: 2023 ident: epl24100312bib22 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2023)222 – volume: 131 year: 2023 ident: epl24100312bib24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.220404 – volume: 125 year: 2020 ident: epl24100312bib60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.130601 – volume: 2024 start-page: 179 year: 2024 ident: epl24100312bib16 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2024)179 – volume: 8 year: 2018 ident: epl24100312bib5 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30982-w – volume: 103 year: 2021 ident: epl24100312bib20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.062214 – volume: 108 year: 2023 ident: epl24100312bib63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.075110 – volume: 4 year: 2023 ident: epl24100312bib64 publication-title: PRX Quantum – volume: 24 start-page: 345 year: 2022 ident: epl24100312bib49 publication-title: Entropy doi: 10.3390/e24030345 – volume: 2024 start-page: 337 year: 2024 ident: epl24100312bib17 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2024)337 – volume: 24 start-page: 824 year: 2022 ident: epl24100312bib48 publication-title: Entropy doi: 10.3390/e24060824 – volume: 122 year: 2019 ident: epl24100312bib23 publication-title: Phys. Rev. Lett. – volume: 2022 start-page: 81 year: 2022 ident: epl24100312bib37 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2022)081 – volume: 107 year: 2023 ident: epl24100312bib50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.032418 – volume: 7 start-page: 1055 year: 2023 ident: epl24100312bib40 publication-title: Quantum doi: 10.22331/q-2023-07-11-1055 – volume: 70 start-page: 3339 year: 1993 ident: epl24100312bib58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.3339 – volume: 131 year: 2023 ident: epl24100312bib30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.160402 – volume: 2024 start-page: 94 year: 2024 ident: epl24100312bib66 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2024)094 – volume: 2018 start-page: 122 year: 2018 ident: epl24100312bib67 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2018)122 – volume: 30 start-page: 3643 year: 1997 ident: epl24100312bib4 publication-title: Phys. A: Math. Gen. doi: 10.1088/0305-4470/30/10/035 – volume: 5 start-page: 207 year: 2022 ident: epl24100312bib39 publication-title: Commun. Phys. doi: 10.1038/s42005-022-00985-1 – volume: 2019 start-page: 264 year: 2019 ident: epl24100312bib52 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2019)264 – volume: 131 year: 2024 ident: epl24100312bib8 publication-title: Phys. Rev. Lett. – volume: 127 year: 2021 ident: epl24100312bib28 publication-title: Phys. Rev. Lett. – volume: 2023 start-page: 54 year: 2023 ident: epl24100312bib36 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2023)054 – volume: 2022 start-page: 174 year: 2022 ident: epl24100312bib46 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2022)174 – volume: 5 start-page: 217 year: 1966 ident: epl24100312bib53 publication-title: Probab. Theory Relat. Fields – volume: 34 year: 2024 ident: epl24100312bib25 publication-title: Chaos doi: 10.1063/5.0199335 – volume: 2022 start-page: 151 year: 2022 ident: epl24100312bib44 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2022)151 – volume: 2008 start-page: 065 year: 2008 ident: epl24100312bib59 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/10/065 – year: 2022 ident: epl24100312bib21 – volume: 9 year: 2019 ident: epl24100312bib29 publication-title: Phys. Rev. X – volume: 8 year: 2018 ident: epl24100312bib13 publication-title: Phys. Rev. X – volume: 6 year: 2022 ident: epl24100312bib68 publication-title: J. Phys. Commun. doi: 10.1088/2399-6528/ac8f19 – volume: 14 start-page: 335 year: 2023 ident: epl24100312bib56 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031720-030658 – volume: 106 year: 2022 ident: epl24100312bib15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.046007 – year: 2023 ident: epl24100312bib41 – volume: 2023 start-page: 66 year: 2023 ident: epl24100312bib34 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2023)066 – volume: 39 start-page: S898 year: 2017 ident: epl24100312bib38 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1084195 – year: 2024 ident: epl24100312bib26 – volume: 5 year: 2023 ident: epl24100312bib32 publication-title: Phys. Rev. Res. – volume: 10 year: 2020 ident: epl24100312bib27 publication-title: Phys. Rev. X – volume: 105 year: 2022 ident: epl24100312bib12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.075131 – volume: 104 year: 2021 ident: epl24100312bib45 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.034112 – volume: 2023 start-page: 99 year: 2023 ident: epl24100312bib42 publication-title: J. High Energy Phys. doi: 10.1007/JHEP08(2023)099 – volume: 106 year: 2022 ident: epl24100312bib62 publication-title: Phys. Rev. B – volume: 109 year: 2024 ident: epl24100312bib35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.125149 – volume: 4 year: 2022 ident: epl24100312bib33 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.013041 – volume: 2018 start-page: 127 year: 2018 ident: epl24100312bib10 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2018)127 – volume: 3 start-page: 1191 year: 1962 ident: epl24100312bib3 publication-title: J. Math. Phys. doi: 10.1063/1.1703862 – year: 2024 ident: epl24100312bib11 – volume: 113 start-page: 363 year: 2006 ident: epl24100312bib54 publication-title: Oikos doi: 10.1111/j.2006.0030-1299.14714.x – volume: 106 year: 2022 ident: epl24100312bib43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.205150 – volume: 4 year: 2022 ident: epl24100312bib65 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.L022068 – start-page: 524 year: 1993 ident: epl24100312bib2 – volume: 8 start-page: 31 year: 2005 ident: epl24100312bib57 publication-title: Teach. Math. – volume: 8 year: 2018 ident: epl24100312bib9 publication-title: Phys. Rev. X – volume: 2023 start-page: 157 year: 2023 ident: epl24100312bib18 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2023)157 – volume: 124 year: 2020 ident: epl24100312bib7 publication-title: Phys. Rev. Lett – volume: 6 year: 2024 ident: epl24100312bib51 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.6.013309 – volume: 62 start-page: S63 year: 1977 ident: epl24100312bib55 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2016299 |
SSID | ssj0011816 |
Score | 2.494388 |
Snippet | Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 38002 |
SubjectTerms | Complexity Dynamics Population distribution |
Title | Operator growth and spread complexity in open quantum systems |
URI | https://iopscience.iop.org/article/10.1209/0295-5075/ad5b17 https://www.proquest.com/docview/3108055607 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7aigcP4hOrtexBDx5ik32kWcSDiKUKWg8Vewv7igqaRpOCP9_ZJK2IUryFMNmEj-zON3zzQOgIXJ4KDZNeGDHrMU6ZJ5mxnivr1AR8vi6nRNzehcMHdjPhkwY6W9TCTLP66D-Fy6pRcAVh1QrBFz2fCO4BjeE9abgK-k20QqMwcpHXiD4uJARwXaVQObeuNcq_Vvjhk5rw3l8Hc-ltBhtovaaJ-KL6qE3UsOkWWi3TNXW-jc5HmS31cfwEYXTxjGVqcJ4BATS4TBK3n8Cu8UuK3XQs_D4D_GZvuGrbnO-g8eBqfDn06kEInqbcL7xAaK4jpxEb2JFEhUL5ihKIVFigpAKOJ4iNrFVMUKpkkIhEJ4aLRPUNsZbuolY6Te2eq9Am_cD4oQyoZElgpOUyNKHhBm6JhLRRb45ErOsm4W5WxWvsggXALnbYxQ67uMKujU4WT2RVg4wltscAblzvknyJXWcO_7cxddmQHAhaf_-fyxygNaAnfp2v10Gt4mNmD4FDFKqLmtej-275x3wB57a-aw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA46UbyInzidmoMePNS2-dpy8CDqmF-bh4m7laRJVdCu2g38-b5pu4kow1spSVoekrzPy_vxIHQIJk8Lw5QnWsx6jFPmKWas58o6YwI2Py5UIu66ovPArgd8UOmcFrUww6y6-k_gsWwUXEJYtkIIpB8QyT2gMdxXhuuw6WcmmUcLnArhtBt69HEaRgDzVQQrJzOqOOVfq_ywS_Pw7V-Xc2Fx2qtopaKK-Kz8sTU0Z9N1tFikbMb5BjrtZbaIkeMncKVHz1ilBucZkECDi0Rx-wkMG7-k2Clk4fcxYDh-w2Xr5nwT9duX_fOOV4kheDHlwcgLZczjlosTGziVRAupA00JeCss1EoDz5PEtqzVTFKqVZjIJE4Ml4luGmIt3UK1dJjabVelTZqhCYQKqWJJaJTlShhhuIFXMiF15E-QiOKqUbjTq3iNnMMA2EUOu8hhF5XY1dHxdEZWNsmYMfYIwI2qk5LPGNeYwP89mLqMSA4krbnzz2UO0NL9RTu6vere7KJlAoykzN5roNroY2z3gFGM9H6xa74Aj9bBHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+growth+and+spread+complexity+in+open+quantum+systems&rft.jtitle=Europhysics+letters&rft.au=Carolan%2C+Eoin&rft.au=Kiely%2C+Anthony&rft.au=Campbell%2C+Steve&rft.au=Deffner%2C+Sebastian&rft.date=2024-08-01&rft.pub=EDP+Sciences%2C+IOP+Publishing+and+Societ%C3%A0+Italiana+di+Fisica&rft.issn=0295-5075&rft.eissn=1286-4854&rft.volume=147&rft.issue=3&rft_id=info:doi/10.1209%2F0295-5075%2Fad5b17&rft.externalDocID=epl24100312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0295-5075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0295-5075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0295-5075&client=summon |