Operator growth and spread complexity in open quantum systems

Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator...

Full description

Saved in:
Bibliographic Details
Published inEurophysics letters Vol. 147; no. 3; pp. 38002 - 38008
Main Authors Carolan, Eoin, Kiely, Anthony, Campbell, Steve, Deffner, Sebastian
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences, IOP Publishing and Società Italiana di Fisica 01.08.2024
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator in time is a useful way to capture the complexity of the internal information dynamics of a system when subject to an environment and is, in principle, agnostic to the specific choice of operator basis. We demonstrate its effectiveness for the Sachdev-Ye-Kitaev (SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of operator strings. We prove that the former basis minimises spread complexity while the latter is an eigenbasis for high dissipation. In both cases, we probe the long-time dynamics of the model and the phenomenological effects of decoherence on the complexity of the dynamics.
AbstractList Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator in time is a useful way to capture the complexity of the internal information dynamics of a system when subject to an environment and is, in principle, agnostic to the specific choice of operator basis. We demonstrate its effectiveness for the Sachdev-Ye-Kitaev (SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of operator strings. We prove that the former basis minimises spread complexity while the latter is an eigenbasis for high dissipation. In both cases, we probe the long-time dynamics of the model and the phenomenological effects of decoherence on the complexity of the dynamics.
Author Carolan, Eoin
Campbell, Steve
Deffner, Sebastian
Kiely, Anthony
Author_xml – sequence: 1
  givenname: Eoin
  orcidid: 0000-0003-1206-9884
  surname: Carolan
  fullname: Carolan, Eoin
  organization: Centre for Quantum Engineering, Science, and Technology, University College Dublin Belfield, Dublin 4, Ireland
– sequence: 2
  givenname: Anthony
  orcidid: 0000-0002-0797-4671
  surname: Kiely
  fullname: Kiely, Anthony
  organization: Centre for Quantum Engineering, Science, and Technology, University College Dublin Belfield, Dublin 4, Ireland
– sequence: 3
  givenname: Steve
  orcidid: 0000-0002-3427-9113
  surname: Campbell
  fullname: Campbell, Steve
  organization: Centre for Quantum Engineering, Science, and Technology, University College Dublin Belfield, Dublin 4, Ireland
– sequence: 4
  givenname: Sebastian
  orcidid: 0000-0003-0504-6932
  surname: Deffner
  fullname: Deffner, Sebastian
  organization: National Quantum Laboratory - College Park, MD 20740, USA
BookMark eNp9kM9LwzAUx4NMcJvePQa8WpcfTdocPMhwKgx22T0kbaoZa9IlKbr_3o6KgqDv8g7v-3nv8ZmBifPOAHCN0R0mSCwQESxjqGALVTONizMwxaTkWV6yfAKm3-MLMItxhxDGJeZTcL_pTFDJB_ga_Ht6g8rVMHbBqBpWvu325sOmI7QO-s44eOiVS30L4zEm08ZLcN6ofTRXX30OtqvH7fI5W2-eXpYP66yiDKUMi4pVJSYFqlFBieZCI02J4DzHWmkxFDGlMToXlGqFG9FUTc1Eo4uaGEPn4GZc2wV_6E1Mcuf74IaLkmJUIsb4sHcO-Jiqgo8xmEZWNqlkvUtB2b3ESJ5MyZMKeVIhR1MDiH6BXbCtCsf_kNsRsb77eebP-CdMtntQ
CODEN EULEEJ
CitedBy_id crossref_primary_10_1103_PhysRevB_111_064203
crossref_primary_10_1007_JHEP10_2024_043
crossref_primary_10_22331_q_2025_02_26_1651
Cites_doi 10.1103/PRXQuantum.2.010306
10.1088/0031-8949/40/3/013
10.1007/JHEP11(2023)222
10.1103/PhysRevLett.131.220404
10.1103/PhysRevLett.125.130601
10.1007/JHEP03(2024)179
10.1038/s41598-018-30982-w
10.1103/PhysRevA.103.062214
10.1103/PhysRevB.108.075110
10.3390/e24030345
10.1007/JHEP05(2024)337
10.3390/e24060824
10.1007/JHEP12(2022)081
10.1103/PhysRevA.107.032418
10.22331/q-2023-07-11-1055
10.1103/PhysRevLett.70.3339
10.1103/PhysRevLett.131.160402
10.1007/JHEP01(2024)094
10.1007/JHEP06(2018)122
10.1088/0305-4470/30/10/035
10.1038/s42005-022-00985-1
10.1007/JHEP10(2019)264
10.1007/JHEP03(2023)054
10.1007/JHEP05(2022)174
10.1063/5.0199335
10.1007/JHEP07(2022)151
10.1088/1126-6708/2008/10/065
10.1088/2399-6528/ac8f19
10.1146/annurev-conmatphys-031720-030658
10.1103/PhysRevD.106.046007
10.1007/JHEP12(2023)066
10.1137/16M1084195
10.1103/PhysRevB.105.075131
10.1103/PhysRevE.104.034112
10.1007/JHEP08(2023)099
10.1103/PhysRevB.109.125149
10.1103/PhysRevResearch.4.013041
10.1007/JHEP10(2018)127
10.1063/1.1703862
10.1111/j.2006.0030-1299.14714.x
10.1103/PhysRevB.106.205150
10.1103/PhysRevResearch.4.L022068
10.1007/JHEP10(2023)157
10.1103/PhysRevResearch.6.013309
10.1121/1.2016299
ContentType Journal Article
Copyright Copyright © 2024 The author(s)
Copyright © 2024 The author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2024 The author(s)
– notice: Copyright © 2024 The author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1209/0295-5075/ad5b17
DatabaseName Institute of Physics Open Access Journals (Activated by CARLI)
IOPscience (Open Access)
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journals (Activated by CARLI)
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1286-4854
ExternalDocumentID 10_1209_0295_5075_ad5b17
epl24100312
GroupedDBID -~X
1JI
4.4
5B3
5GY
5VS
5ZH
6TJ
7.M
7.Q
AAFWJ
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABGRX
ABQJV
ABVAM
ACAFW
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
AZPVJ
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
H~9
IHE
IJHAN
IOP
IZVLO
KOT
LAP
MV1
N5L
N9A
O3W
P2P
PIG
PJBAE
R4D
RED
REP
RID
RIN
RNS
ROL
RPA
SJN
SY9
TN5
TSCCA
UCJ
UPT
ZMT
~02
AAYXX
ABNSH
CITATION
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c350t-19c5c81270d0732b69b0b3296641bab99992e8eeb4933ba1f9fcfd59fb7d2ee3
IEDL.DBID O3W
ISSN 0295-5075
IngestDate Mon Jun 30 16:29:35 EDT 2025
Tue Jul 01 00:30:16 EDT 2025
Thu Apr 24 23:02:02 EDT 2025
Wed Aug 28 02:36:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License (CC-BY). Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-19c5c81270d0732b69b0b3296641bab99992e8eeb4933ba1f9fcfd59fb7d2ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3427-9113
0000-0002-0797-4671
0000-0003-1206-9884
0000-0003-0504-6932
OpenAccessLink https://iopscience.iop.org/article/10.1209/0295-5075/ad5b17
PQID 3108055607
PQPubID 1806341
PageCount 7
ParticipantIDs crossref_citationtrail_10_1209_0295_5075_ad5b17
crossref_primary_10_1209_0295_5075_ad5b17
proquest_journals_3108055607
iop_journals_10_1209_0295_5075_ad5b17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240801
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240801
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Europhysics letters
PublicationTitleAbbrev EPL
PublicationTitleAlternate EPL
PublicationYear 2024
Publisher EDP Sciences, IOP Publishing and Società Italiana di Fisica
IOP Publishing
Publisher_xml – name: EDP Sciences, IOP Publishing and Società Italiana di Fisica
– name: IOP Publishing
References Liu (epl24100312bib32) 2023; 5
Jost (epl24100312bib54) 2006; 113
Dowling (epl24100312bib8) 2024; 131
Noh (epl24100312bib45) 2021; 104
Kulkarni (epl24100312bib62) 2022; 106
Xu (epl24100312bib23) 2019; 122
Schuster (epl24100312bib30) 2023; 131
Hörnedal (epl24100312bib39) 2022; 5
Balasubramanian (epl24100312bib15) 2022; 106
Li (epl24100312bib49) 2022; 24
Sekino (epl24100312bib59) 2008; 2008
Sachdev (epl24100312bib58) 1993; 70
Bhattacharya (epl24100312bib16) 2024; 2024
Sá (epl24100312bib65) 2022; 4
Larzul (epl24100312bib21) 2022
Kawabata (epl24100312bib64) 2023; 4
García‐García (epl24100312bib26) 2024
Blocher (epl24100312bib51) 2024; 6
Parker (epl24100312bib29) 2019; 9
Belyansky (epl24100312bib60) 2020; 125
Dyson (epl24100312bib3) 1962; 3
Jelinek (epl24100312bib55) 1977; 62
Bhattacharjee (epl24100312bib36) 2023; 2023
Xu (epl24100312bib61) 2021; 103
Khemani (epl24100312bib9) 2018; 8
Caputa (epl24100312bib33) 2022; 4
Bhattacharya (epl24100312bib34) 2023; 2023
Rakovszky (epl24100312bib12) 2022; 105
Wienand (epl24100312bib11) 2024
Weinstein (epl24100312bib24) 2023; 131
Srivatsa (epl24100312bib35) 2024; 109
Tripathy (epl24100312bib25) 2024; 34
Bhattacharjee (epl24100312bib43) 2022; 106
Bhattacharjee (epl24100312bib66) 2024; 2024
Rabinovici (epl24100312bib44) 2022; 2022
Berry (epl24100312bib1) 1989; 40
von Keyserlingk (epl24100312bib14) 2018; 8
Caputa (epl24100312bib17) 2024; 2024
Kawabata (epl24100312bib63) 2023; 108
Bhattacharya (epl24100312bib37) 2022; 2022
Mohan (epl24100312bib22) 2023; 2023
Chenu (epl24100312bib5) 2018; 8
Bhattacharjee (epl24100312bib42) 2023; 2023
Touil (epl24100312bib19) 2021; 2
Kadelburg (epl24100312bib57) 2005; 8
Blake (epl24100312bib10) 2018; 2018
García‐Mata (epl24100312bib6) 2022
Omanakuttan (epl24100312bib50) 2023; 107
Hörnedal (epl24100312bib40) 2023; 7
Wigner (epl24100312bib2) 1993
Gaaf (epl24100312bib38) 2017; 39
Campbell (epl24100312bib53) 1966; 5
Fisher (epl24100312bib56) 2023; 14
Liu (epl24100312bib31) 2024
Bhattacharyya (epl24100312bib18) 2023; 2023
Şenyaşa (epl24100312bib48) 2022; 24
Roberts (epl24100312bib67) 2018; 2018
Rakovszky (epl24100312bib13) 2018; 8
Bhattacharjee (epl24100312bib46) 2022; 2022
Ryan (epl24100312bib68) 2022; 6
Zanardi (epl24100312bib20) 2021; 103
Xu (epl24100312bib7) 2020; 124
Barbón (epl24100312bib52) 2019; 2019
Sá (epl24100312bib27) 2020; 10
Huh (epl24100312bib47) 2023
Li (epl24100312bib28) 2021; 127
Kettemann (epl24100312bib4) 1997; 30
Suchsland (epl24100312bib41) 2023
References_xml – volume: 2
  year: 2021
  ident: epl24100312bib19
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.010306
– year: 2023
  ident: epl24100312bib47
– year: 2022
  ident: epl24100312bib6
– volume: 8
  year: 2018
  ident: epl24100312bib14
  publication-title: Phys. Rev. X
– year: 2024
  ident: epl24100312bib31
– volume: 103
  year: 2021
  ident: epl24100312bib61
  publication-title: Phys. Rev. B
– volume: 40
  start-page: 335
  year: 1989
  ident: epl24100312bib1
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/40/3/013
– volume: 2023
  start-page: 222
  year: 2023
  ident: epl24100312bib22
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2023)222
– volume: 131
  year: 2023
  ident: epl24100312bib24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.220404
– volume: 125
  year: 2020
  ident: epl24100312bib60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.130601
– volume: 2024
  start-page: 179
  year: 2024
  ident: epl24100312bib16
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2024)179
– volume: 8
  year: 2018
  ident: epl24100312bib5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30982-w
– volume: 103
  year: 2021
  ident: epl24100312bib20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.062214
– volume: 108
  year: 2023
  ident: epl24100312bib63
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.075110
– volume: 4
  year: 2023
  ident: epl24100312bib64
  publication-title: PRX Quantum
– volume: 24
  start-page: 345
  year: 2022
  ident: epl24100312bib49
  publication-title: Entropy
  doi: 10.3390/e24030345
– volume: 2024
  start-page: 337
  year: 2024
  ident: epl24100312bib17
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2024)337
– volume: 24
  start-page: 824
  year: 2022
  ident: epl24100312bib48
  publication-title: Entropy
  doi: 10.3390/e24060824
– volume: 122
  year: 2019
  ident: epl24100312bib23
  publication-title: Phys. Rev. Lett.
– volume: 2022
  start-page: 81
  year: 2022
  ident: epl24100312bib37
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2022)081
– volume: 107
  year: 2023
  ident: epl24100312bib50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.032418
– volume: 7
  start-page: 1055
  year: 2023
  ident: epl24100312bib40
  publication-title: Quantum
  doi: 10.22331/q-2023-07-11-1055
– volume: 70
  start-page: 3339
  year: 1993
  ident: epl24100312bib58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.3339
– volume: 131
  year: 2023
  ident: epl24100312bib30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.160402
– volume: 2024
  start-page: 94
  year: 2024
  ident: epl24100312bib66
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2024)094
– volume: 2018
  start-page: 122
  year: 2018
  ident: epl24100312bib67
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2018)122
– volume: 30
  start-page: 3643
  year: 1997
  ident: epl24100312bib4
  publication-title: Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/30/10/035
– volume: 5
  start-page: 207
  year: 2022
  ident: epl24100312bib39
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-00985-1
– volume: 2019
  start-page: 264
  year: 2019
  ident: epl24100312bib52
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2019)264
– volume: 131
  year: 2024
  ident: epl24100312bib8
  publication-title: Phys. Rev. Lett.
– volume: 127
  year: 2021
  ident: epl24100312bib28
  publication-title: Phys. Rev. Lett.
– volume: 2023
  start-page: 54
  year: 2023
  ident: epl24100312bib36
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2023)054
– volume: 2022
  start-page: 174
  year: 2022
  ident: epl24100312bib46
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2022)174
– volume: 5
  start-page: 217
  year: 1966
  ident: epl24100312bib53
  publication-title: Probab. Theory Relat. Fields
– volume: 34
  year: 2024
  ident: epl24100312bib25
  publication-title: Chaos
  doi: 10.1063/5.0199335
– volume: 2022
  start-page: 151
  year: 2022
  ident: epl24100312bib44
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2022)151
– volume: 2008
  start-page: 065
  year: 2008
  ident: epl24100312bib59
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/10/065
– year: 2022
  ident: epl24100312bib21
– volume: 9
  year: 2019
  ident: epl24100312bib29
  publication-title: Phys. Rev. X
– volume: 8
  year: 2018
  ident: epl24100312bib13
  publication-title: Phys. Rev. X
– volume: 6
  year: 2022
  ident: epl24100312bib68
  publication-title: J. Phys. Commun.
  doi: 10.1088/2399-6528/ac8f19
– volume: 14
  start-page: 335
  year: 2023
  ident: epl24100312bib56
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031720-030658
– volume: 106
  year: 2022
  ident: epl24100312bib15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.046007
– year: 2023
  ident: epl24100312bib41
– volume: 2023
  start-page: 66
  year: 2023
  ident: epl24100312bib34
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2023)066
– volume: 39
  start-page: S898
  year: 2017
  ident: epl24100312bib38
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1084195
– year: 2024
  ident: epl24100312bib26
– volume: 5
  year: 2023
  ident: epl24100312bib32
  publication-title: Phys. Rev. Res.
– volume: 10
  year: 2020
  ident: epl24100312bib27
  publication-title: Phys. Rev. X
– volume: 105
  year: 2022
  ident: epl24100312bib12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.075131
– volume: 104
  year: 2021
  ident: epl24100312bib45
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.034112
– volume: 2023
  start-page: 99
  year: 2023
  ident: epl24100312bib42
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2023)099
– volume: 106
  year: 2022
  ident: epl24100312bib62
  publication-title: Phys. Rev. B
– volume: 109
  year: 2024
  ident: epl24100312bib35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.109.125149
– volume: 4
  year: 2022
  ident: epl24100312bib33
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.013041
– volume: 2018
  start-page: 127
  year: 2018
  ident: epl24100312bib10
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2018)127
– volume: 3
  start-page: 1191
  year: 1962
  ident: epl24100312bib3
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1703862
– year: 2024
  ident: epl24100312bib11
– volume: 113
  start-page: 363
  year: 2006
  ident: epl24100312bib54
  publication-title: Oikos
  doi: 10.1111/j.2006.0030-1299.14714.x
– volume: 106
  year: 2022
  ident: epl24100312bib43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.205150
– volume: 4
  year: 2022
  ident: epl24100312bib65
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.L022068
– start-page: 524
  year: 1993
  ident: epl24100312bib2
– volume: 8
  start-page: 31
  year: 2005
  ident: epl24100312bib57
  publication-title: Teach. Math.
– volume: 8
  year: 2018
  ident: epl24100312bib9
  publication-title: Phys. Rev. X
– volume: 2023
  start-page: 157
  year: 2023
  ident: epl24100312bib18
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2023)157
– volume: 124
  year: 2020
  ident: epl24100312bib7
  publication-title: Phys. Rev. Lett
– volume: 6
  year: 2024
  ident: epl24100312bib51
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.6.013309
– volume: 62
  start-page: S63
  year: 1977
  ident: epl24100312bib55
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2016299
SSID ssj0011816
Score 2.494388
Snippet Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38002
SubjectTerms Complexity
Dynamics
Population distribution
Title Operator growth and spread complexity in open quantum systems
URI https://iopscience.iop.org/article/10.1209/0295-5075/ad5b17
https://www.proquest.com/docview/3108055607
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7aigcP4hOrtexBDx5ik32kWcSDiKUKWg8Vewv7igqaRpOCP9_ZJK2IUryFMNmEj-zON3zzQOgIXJ4KDZNeGDHrMU6ZJ5mxnivr1AR8vi6nRNzehcMHdjPhkwY6W9TCTLP66D-Fy6pRcAVh1QrBFz2fCO4BjeE9abgK-k20QqMwcpHXiD4uJARwXaVQObeuNcq_Vvjhk5rw3l8Hc-ltBhtovaaJ-KL6qE3UsOkWWi3TNXW-jc5HmS31cfwEYXTxjGVqcJ4BATS4TBK3n8Cu8UuK3XQs_D4D_GZvuGrbnO-g8eBqfDn06kEInqbcL7xAaK4jpxEb2JFEhUL5ihKIVFigpAKOJ4iNrFVMUKpkkIhEJ4aLRPUNsZbuolY6Te2eq9Am_cD4oQyoZElgpOUyNKHhBm6JhLRRb45ErOsm4W5WxWvsggXALnbYxQ67uMKujU4WT2RVg4wltscAblzvknyJXWcO_7cxddmQHAhaf_-fyxygNaAnfp2v10Gt4mNmD4FDFKqLmtej-275x3wB57a-aw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA46UbyInzidmoMePNS2-dpy8CDqmF-bh4m7laRJVdCu2g38-b5pu4kow1spSVoekrzPy_vxIHQIJk8Lw5QnWsx6jFPmKWas58o6YwI2Py5UIu66ovPArgd8UOmcFrUww6y6-k_gsWwUXEJYtkIIpB8QyT2gMdxXhuuw6WcmmUcLnArhtBt69HEaRgDzVQQrJzOqOOVfq_ywS_Pw7V-Xc2Fx2qtopaKK-Kz8sTU0Z9N1tFikbMb5BjrtZbaIkeMncKVHz1ilBucZkECDi0Rx-wkMG7-k2Clk4fcxYDh-w2Xr5nwT9duX_fOOV4kheDHlwcgLZczjlosTGziVRAupA00JeCss1EoDz5PEtqzVTFKqVZjIJE4Ml4luGmIt3UK1dJjabVelTZqhCYQKqWJJaJTlShhhuIFXMiF15E-QiOKqUbjTq3iNnMMA2EUOu8hhF5XY1dHxdEZWNsmYMfYIwI2qk5LPGNeYwP89mLqMSA4krbnzz2UO0NL9RTu6vere7KJlAoykzN5roNroY2z3gFGM9H6xa74Aj9bBHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+growth+and+spread+complexity+in+open+quantum+systems&rft.jtitle=Europhysics+letters&rft.au=Carolan%2C+Eoin&rft.au=Kiely%2C+Anthony&rft.au=Campbell%2C+Steve&rft.au=Deffner%2C+Sebastian&rft.date=2024-08-01&rft.pub=EDP+Sciences%2C+IOP+Publishing+and+Societ%C3%A0+Italiana+di+Fisica&rft.issn=0295-5075&rft.eissn=1286-4854&rft.volume=147&rft.issue=3&rft_id=info:doi/10.1209%2F0295-5075%2Fad5b17&rft.externalDocID=epl24100312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0295-5075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0295-5075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0295-5075&client=summon